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ABSTRACT
Accurate, up-to-date maps of transient tra�c and hazards are invalu-
able to drivers, city managers, and the emerging class of self-driving
vehicles. We present LiveMap, a scalable, automated system for ac-
quiring, curating, and disseminating detailed, continually-updated
road conditions in a region. LiveMap leverages in-vehicle cameras,
sensors, and processors to crowd-source hazard detection without
human intervention. We build a real-time simulation framework
that allows a mix of real and simulated components to be tested to-
gether at scale. We demonstrate that LiveMap can work well at city
scales within the limits of today’s cellular network bandwidth. We
also show the feasibility of accurate, in-vehicle, computer-vision-
based hazard detection.

CCS CONCEPTS
•Networks→ Application layer protocols; Mobile networks;
Network performancemodeling; Network experimentation; •So�ware
and its engineering→ Distributed systems organizing prin-
ciples; Middleware; Operating systems; Client-server architectures;
•Information systems→ Sensor networks; Mobile informa-
tion processing systems; Geographic information systems;

KEYWORDS
Vehicular Systems; Automotive Systems; Maps; Cloudlet; Edge
Computing; Cloud Computing; Situational Awareness; Driverless
Cars

1 Introduction
Every day, millions of drivers bene�t from real-time synthesis of
GPS location data that is periodically transmi�ed by participating
vehicles (Figure 1). In this paper, we examine future extensions of
this concept to provide �ne-grain, deep-zoom details about road
conditions and hazards such as “Dead deer in le� lane at GPS loca-
tion (x,y), here is an image;” or, “ Fog detected at GPS location (x,y),
visibility down to 30 feet, here is a short video clip.” Receiving map
overlays with such details in near real-time could greatly improve
the situational awareness of many stakeholders such as driverless
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Figure 1: Tra�c Overlay on Google Maps

vehicles, drivers, road-maintenance crews, emergency personnel,
and law enforcement o�cers [23]. We look to a future when such re-
ports can be algorithmically-generated, without human assistance,
from video cameras and other sensors on a vehicle.

�is paper focuses on LiveMap, a scalable mobile information
system that synthesizes vehicular update streams in real-time. Our
informal scalability goal is tens of thousands of vehicles over a
county-sized coverage area. For the foreseeable future, 4G LTE
o�ers the most plausible wide-area Internet connectivity from a
moving vehicle. �e demand for this resource is intense, and its
spectrum-limited supply is scarce [9]. Hence, the crucial require-
ment for our system is to be frugal in terms of wireless transmission.
Peak bandwidth demand as well as total volume of data transmi�ed
should be minimized, while o�ering timely synthesis.

A simple implementation strategy would be to ship the video
from moving vehicles over 4G LTE to the cloud or a regional data
collection point for real-time video analytics and generation of map
overlays. Unfortunately, this is not scalable in terms of wireless
network usage. For example, consider rush hour in Manha�an over
the two-block by two-block coverage area of a small cell. Using an
average vehicle size of 5 m and a separation of 5 m, such an area
can accommodate roughly 400 vehicles. If each vehicle streams
SD video at 3.0 Mbps (Net�ix’s estimate [17]), the total aggregate
uplink demand in the cell would be 1.2 Gbps. �is clearly exceeds
the stated capacity of 500 Mbps for LTE Advanced technology [16].
Streaming HD or 4K video rather than SD video would improve
the quality of the video analytics and expose �ner-grain features,
but would worsen the bandwidth problem. Non-urban areas have
much lower density of vehicles, but their cells are larger.

Scalability can be greatly improved by performing video ana-
lytics on board each vehicle at an edge computing device called a



cloudlet [24]. Only the extracted information, encoded in a stan-
dardized format such as XML or JSON, needs to be shipped over
4G LTE to the data collection center. For example, analysis of a
single video frame that is multiple megabytes in size may result
in output that is just a few hundred bytes in size. �is reduction
in bandwidth demand by 4 to 5 orders of magnitude is crucial for
scalability. In practice, the system would require an image or short
video clip to be uploaded for each detected event, for further anal-
ysis and con�rmation purposes. Even with this, the bandwidth
savings from processing in the vehicle over streaming all video to
the regional data collection point will be tremendous. Of course, a
critical requirement is that a vehicle’s cloudlet be powerful enough
to transform continuous real-time input from its video and other
sensors into a low-bandwidth semantic update stream. �is is a
reasonable assumption with today’s computing technology.

We focus on scalability issues in this paper, ignoring broader
issues such as privacy, incentive structure for participation in
LiveMap, and the HCI issues involved in optimally delivering syn-
thesized output to di�erent types of consumers. In this paper, we
�rst describe the real-time simulation framework we have built
to allow us to run and test a mix of real and simulated instances
of system components at scale. We then describe how we model
LiveMap components in our simulation framework, followed by
an evaluation of bandwidth consumption for di�erent upload poli-
cies. Finally, we demonstrate the feasibility of in-vehicle hazard
detection by building detectors to �nd deer and potholes.

2 Background and Related Work
Research on vehicular communication and computing spans nearly
two decades. A major theme has been vehicle to vehicle (V2V) use
cases. �ese focus on transient information (lifetimes of millisec-
onds to seconds), whereas LiveMap involves persistence of sensor
information and map information over timescales of minutes to
hours to days. Second, the response times involved di�er by two or
more orders of magnitude: a few milliseconds or less for V2V use
cases, versus LiveMap’s best-e�ort response times of hundreds of
milliseconds to a few seconds to detect and report an observation.
�us, LiveMap is “near real-time” rather than “hard real-time.”

Closely related to V2V use cases is the entire body of wireless net-
working research on vehicular ad hoc networking (VANET). LiveMap
does not rely on VANET technologies, but instead relies on the
widely-used 4G LTE technology. �e unique challenges of using
LTE for vehicular use cases have been discussed by Araniti et al [6],
and their insights apply to our work.

Driverless vehicles are another hot topic in vehicular research.
Many of the V2V safety use cases mentioned above are relevant
to driverless vehicles. Rapid sensing and actuation for collision
avoidance are essential for any driverless vehicle. At the same time,
proactive actions based on detailed map information are (whenever
possible) be�er than reactive just-in-time actions. As Autor points
out [7], “A Google car navigates through the road network pri-
marily by comparing its real-time audio-visual sensor data against
painstakingly hand-curated maps that specify the exact locations
of all roads, signals, signage, and obstacles.” �e creation of these
detailed maps, which change rapidly over time, is a large hidden
cost of driverless vehicular technology. LiveMap could cheaply and
continuously crowd-source the creation of these detailed maps.

Closest in spirit to LiveMap are commercial map services such
as Waze [28]. LiveMap can be viewed as a Waze-like system that
automates the sensing, reporting, and synthesis of events. Instead
of relying on human input, LiveMap is based on sensor data that
is locally processed to generate map update reports. It would be
simple to extend LiveMap to also allow human input.

Independent of vehicular contexts, there is a huge body of work
on data aggregation in sensor networks [12, 15, 26].�at work has
tended to focus on small low-cost sensors where the dominant con-
straint is the energy cost of sensing, processing and transmission.
In contrast, energy usage for processing and transmission is only a
minor consideration in LiveMap. Relative to the energy consumed
in accelerating and maintaining a vehicle and its occupants at high-
way speeds, the energy used by LiveMap is modest. Bandwidth
demand on 4G LTE is the dominant theme for LiveMap.

3 Simulation Framework
3.1 Goals and Requirements
Our intention is to build a prototype implementation of the LiveMap
system and test it at scale. As it is impractical to actually imple-
ment, deploy, and connect even a small set of vehicles with cameras
and computation, and drive them around a city, we instead rely on
realistic simulations to provide scale. However, we would like to be
able to plug in a few instances of real, implemented components,
and have them interact with the large number of simulated com-
ponents. �is will allow us to both run the system at large scale
and to test the actual implemented application code. Our primary
focus is on system scalability, so accuracy of sensing models or
low-level details of the network are less critical. Based on these
considerations, we derive the following requirements:

• simulate vehicles and applications that communicate with
�xed infrastructure

• support real maps and realistic tra�c pa�erns
• allow interfacing with real implementations of system com-

ponents by executing in real time
• support county- or city-scale simulations

�e rest of this section details the simulation system that we
have designed and implemented to meet these requirements.

3.2 Vehicle Simulation
We began our investigations with the Veins [25] system, which is
intended for the study of connected vehicular systems. It provides
accurate modeling of vehicular communication networks, and in-
cludes models for V2V communication and for LTE. Furthermore,
it also provides a straightforward way to run custom application
logic on each simulated vehicle, a key need for our work.

Veins itself is built on top of SUMO [8] and Omnet++ [27]. SUMO
is an open-source vehicle simulation framework that is widely used
to study tra�c pa�erns and smart vehicle coordination, and has
been shown to realistically simulate tra�c pa�erns on maps of real
cities. Omnet++ provides full network stack simulation and is used
to provide accurate models of connectivity and communication
among vehicles and to �xed infrastructure.

Although Veins is functionally well-suited to our goals, it su�ers
from performance issues. Its architecture separates the SUMO and



Omnet++ components into di�erent processes, thus incurring inter-
process communication overhead at each simulation step. Further,
the network is modeled much more precisely than we need. Hence,
we also investigate using SUMO alone, extending it with just the
features we need.

3.3 Maps and Tra�c Patterns
SUMO and, by extension, Veins have excellent support for using
real maps in simulations. SUMO provides a tool, NETCONVERT,
to convert the map data from OpenStreetMap [18] to the SUMO
format. OpenStreetMap is a crowd-sourced map of the world, open
and free to the public. Although this converting process is not
perfect, e.g., the locations and changing cycles of tra�c lights are
guessed, it does allow simulations on almost any real road network.

In addition to the maps, we also need realistic tra�c pa�erns as
input models to the simulator. �e largest publicly available input
model is the TAPAS Cologne dataset [5]. It describes tra�c in the
city of Cologne, Germany for a whole day, derived from observed
traveling habits and information about the infrastructure of the
area. Rush hours in this dataset have up to 14,000 vehicles on the
road at the same time, providing us with a clear scalability target.

3.4 Real-time Simulation
A key goal of our work is to mix real and simulated components
together. As a consequence, we need a simulation system that can
run in real time. In other words, the simulated time step equals
the real-world elapsed time for that step. Both SUMO and Veins
are designed for o�ine simulations. To interface the simulated
world to the real components, we ensure that the simulation time
of SUMO is synchronized with real, wall-clock time by adding a
high-precision sleep to SUMO simulation steps. �is modi�cation
adds just enough sleep to the end of each simulation step to allow
wall-clock time to catch up to simulation time.

Of course, this works only when the simulation step takes no
more time to execute than the corresponding real world time period.
How well does this hold true? When running Veins with a few
hundred cars and a time step of 100 ms, we note that most steps
take just a few milliseconds to execute. However, some take signi�-
cantly longer, more than 100 ms, and violate the requirement that
elapsed time be less than simulated time. �e largest spikes are due
to writing of logs, O (n2) heartbeat messaging, and synchronized
introduction of new vehicles into the simulation. We recon�gure
Veins to eliminate these issues, and also pin the simulation process
to a dedicated processor core to reduce context switching. However,
more subtle, periodic spikes persist, as shown in Figure 2(a). A�er
investigation, we determined these are due to the way the simulator
loads input data — every 200 simulation steps, it loads inputs for
the next set of steps. By preloading all inputs, we �nally eliminate
these spikes, as shown in Figure 2(b). Note that these plots re�ect
our modi�cation that introduces a high-precision sleep a�er every
step that executes too quickly, bringing the step time up to the
desired value. �e ideal curve would be a straight line at 100 ms.

As the execution time of a step depends on the size of the simula-
tion, this limits the scale of real-time simulation. Figure 3 compares
the execution time of a single simulation step to the real-world time
it represents for Veins as the number of vehicles is increased. �e
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(a) Periodic spikes in Veins execution time

0 500 1000 1500 2000 2500
Simulation progress (seconds)

0
50

100
150
200

Ti
m

e
sp

en
t

(m
ill

is
ec

on
ds

)

(b) Consistent execution times with fully pre-loaded input data
Figure 2: Execution Time Variability in Veins
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Figure 3: Scalability of Veins

Y axis presents execution time of each simulation step, normalized
by the step size (100ms). Real-time simulation can only be achieved
when this ratio is below 1, as shown by the horizontal line. As
we can see, Veins can run in real-time for up to 1200 vehicles on
a 3.6 GHz CPU (turbo clock rate). As Veins is largely sequential,
increasing the number of CPU cores does not improve scalability.

As LiveMap does not involve V2V communications, we modi�ed
Veins to eliminate V2V-related functionality, in the hope of increas-
ing scalability. �is con�guration supports real-time simulation of
up to 1700 vehicles. �is disappointing result shows that Veins will
likely not su�ce for our goal of county-scale simulations.

Further investigations showed the bo�leneck to be due to trans-
ferring data between the SUMO simulation and the rest of Veins,
which run in separate processes. To evaluate this bo�leneck, we
disabled the inter-process data transfer, using dummy data instead.
�e third curve in Figure 3 is for this non-functional system and
indicates that real-time simulation at signi�cantly higher scales is
possible without the multi-process architecture imposed by Veins.

3.5 Scaling to County-size Inputs
To allow real-time simulation with more than 1700 vehicles, we
must forego Veins and Omnet++, and instead use SUMO alone. We
retest scalability with SUMO alone, plo�ing the execution time
of a simulation step relative to the length of time that the step
represents as the number of vehicles is increased. Figure 4 shows
that SUMO can simulate up to 20,000 vehicles while maintaining
real-time performance on the same 3.6 GHz CPU (turbo clock rate)
as in the Veins experiments. We note that this does not include
any LiveMap code or network communication. With careful im-
plementation of application logic for the vehicles, and use of real



networking between the simulated vehicles and external compo-
nents, we are able to scale SUMO-based, real-time simulations of
LiveMap to 14,000 simultaneous vehicles needed for the Cologne
dataset, for most LiveMap con�gurations. For some variants that
require more processing time, we slightly increase the step size to
keep the simulation real-time.

Further scaling of SUMO is limited by its architecture. �e SUMO
core simulation is single-threaded, and prior a�empts to parallelize
it have not been very successful [14]. A faster simulation model
provided by SUMO, the mesoscopic model, only outputs aggregated
information at the road level and is not useful for LiveMap, where
the locations of individual vehicles along roads are important. De-
spite these limitations, we are able to use SUMO to demonstrate
LiveMap at the scale of a city.

3.6 Simulating In-vehicle Application Logic
We extend SUMO to add support for custom application logic that is
run on each vehicle. �e application logic for LiveMap implements
a model for sensing of road hazards, an application-level data cache,
protocols to maintain the cache, and logic to decide when and what
updates based on sensed hazards should be sent. Our SUMO exten-
sion permits a single application callback method, which is invoked
once per vehicle, per simulation step. �is requires the application
logic to use a polled, event-driven style, and to explicitly keep track
of state of activities across simulation steps. To avoid slowing the
simulation, the application method is required to return quickly,
and avoid long running computations or blocking calls. To support
slow operations and blocking calls (e.g., network communication
operations), our system provides a means of deferred execution –
the operations are queued and executed in the background by a
worker thread pool. It is up to the application method to check if
the deferred operation has completed in a future invocation. Finally,
we use multiple threads to run the application callbacks concur-
rently. �ese implementation choices add some complexity and
introduce some nondeterminism into the simulation, but ensure
that real-time performance is minimally impacted.

For network communications in our simulation, we use an ac-
tual wired connection instead of network models to avoid their
impact on the real-time performance. �is setup can be seen as
an upper bound of the cellular network and may have an impact
on simulation accuracy. As shown in Section 5, this impact is very
small in terms of the metrics important to LiveMap.

4 Modeling LiveMap
4.1 LiveMap Components
LiveMap is a distributed sensing and aggregation system intend-
ing to provide situational awareness across a region. It primarily
consists of a large number of vehicles with multiple sensors, typ-
ically cameras, and signi�cant compute capability in the form of
in-vehicle cloudlets. �ese vehicles observe, detect, and report
anomalies and hazards. For this paper, all of the vehicles and cor-
responding in-vehicle cloudlets are simulated, but the LiveMap
so�ware is real.

We refer to the coverage area of a single instance of LiveMap as
its zone. A centralized entity called the zone cloudlet is responsible
for the zone. We use the term in-vehicle cloudlet in the rest of

the paper to distinguish in-vehicle cloudlets from zone cloudlets.
A zone cloudlet fuses inputs from all in-vehicle cloudlets in its
zone, curates the data to ensure quality control, enforces security
and privacy policies, and selectively disseminates the synthesized
knowledge to participants. A zone cloudlet may be physically
replicated for survivability, and standard failover protocols can be
used to create a high-availability LiveMap service for each zone. A
working prototype zone cloudlet has been implemented. It interacts
with the simulated in-vehicle cloudlets over network connections.

How large a zone should LiveMap target? It is within a single
zone that LiveMap o�ers the best situational awareness — i.e., the
most up to date and timely sharing of information across partici-
pating entities. While it is tempting to consider the entire planet
as one giant zone, there are many reasons why smaller zones are
advisable. In particular, the granularity and resolution of detail of
synthesized information has to be �ne enough to base the second-
to-second actions of driverless vehicles. For a vehicle traveling at
70 mph (roughly 100 feet per second), hazards as small as a one-foot
pothole or an even smaller rock are worthy of a�ention over the
many hundred feet of the road that will be covered in the next few
seconds. At such a �ne spatial and temporal granularity, with the
end-to-end latency of today’s networking technologies as a guide
and the speed of light as a lower bound, it is hard to see how to cre-
ate a single zone that spans the entire planet. What appears feasible
is a federation of many smaller zones. Across that federation, the
spatial and temporal granularity of knowledge propagation may
be signi�cantly lower than within a single zone. Even if observers
outside a zone can “zoom in” to details within that zone, there
will be signi�cant lag in seeing updates. Our intuition which is
validated through the results presented later is that a city-sized
or county-sized coverage area is feasible today, and the focus of
our simulation work. As the end-to-end latency of networking
technologies improves, and as our experience with LiveMap imple-
mentation matures, it is conceivable that a typical zone may expand
to a medium-sized US state.

4.2 Vehicle-Zone Interactions
Figure 5 shows the interactions between an in-vehicle cloudlet and
its currently-associated zone cloudlet. All of the data streams shown
are implemented over TCP connections. In a real deployment, these
will be secured using standard SSL/TLS mechanisms. �e in-vehicle
cloudlet performs edge analytics on external sensor inputs (e.g.,
video cameras, possibly multiple per vehicle) and internal sensor
readings (such as speed, engine performance parameters, occupant
alertness, etc.). �ese edge analytics transform the high data rate
of raw sensor data into a semantic update stream of much lower
bandwidth. Several decentralized transmission control mechanisms,
described in Section 5.3, can be used to determine whether a speci�c
update is likely to be redundant because of reports from other
vehicles. �e updates deemed redundant are suppressed, while the
rest are transmi�ed to the zone cloudlet (arrow 1© in Figure 5).

�e transmission control mechanism in a vehicle may sometimes
be too aggressive. Some data deemed redundant by an in-vehicle
cloudlet may, in fact, be valuable to the zone cloudlet. From time
to time, a zone cloudlet may explicitly request more information
or ask for con�rmation of an observation from another vehicle
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Figure 4: SUMO Scalability
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Figure 5: Vehicle-Zone Interactions

(arrow 2© in Figure 5). �is request is an implicit hint to reduce
the thro�ling of updates by a in-vehicle cloudlet. Each in-vehicle
cloudlet caches data from the zone cloudlet. �e communication to
maintain cache consistency is shown as arrow 3© in Figure 5.

Raw sensor data is bu�ered in local storage at the in-vehicle
cloudlet for a �nite period of time. Retention is valuable if a need
arises later to re-process the data with fresh analytics, or to drill
down for more details. For example, if a public service alert is
issued for a lost child, it may be valuable to search for the child’s
face and clothing in the retained video data from vehicles that
recently passed through relevant neighborhoods. At an average
of 3 GB per hour for HD video [17], almost two weeks of video
can be stored in a modest 1 TB disk, that costs only $50 today.
In Figure 5, arrow 4© corresponds to these ad hoc interactions
between the zone cloudlet and in-vehicle cloudlet. An authorization
mechanism and policy to determine who can present such requests
will be needed in a real-world implementation. More details on
how vehicle-zone interaction is implemented in our prototype can
be found in Section 5.1.

4.3 Synthetic Hazard Generation
To the best of our knowledge, there are no existing large datasets
of road hazards from which we can mine sophisticated statisti-
cal pa�erns. �erefore we create our own synthetic road hazard
event generator. We model events with the following assumptions
and constraints. First, we assume di�erent types of road hazards
(e.g., “dead deer” vs. “car accident”) are independent and happen
according to type-speci�c probabilities. �us, for example, we can
con�gure hazard pro�les with a large number of disabled cars, but
just a few deer sightings. We also assume that events happening on
di�erent road segments are independent. Furthermore, in each unit
of time, the number of events of a particular type that happen on a
road segment follows a Poisson distribution. �us, the probability
that k events happen is P (k ) = e−λ λk

k ! , where λ is the expected
number of events in one unit of time. We modify this slightly so
that the expected number of events on a road segment depends
on its “area,” which is determined by its length and the number of
lanes. �erefore, a three-lane highway will in average have 3 times
the number of events as a similar length single-lane road. Finally,

we constrain particular hazard types to only happen on speci�c
types of roads, e.g., a “car accident” cannot happen on a cycleway.

Our hazard generator takes two �les as input: a hazard pro�le,
containing statistical parameters and constraints, and an Open-
StreetMap �le of a region. It also takes in the starting and ending
times of a simulation and a time unit. By default, we use a time
unit of one second. It then produces a trace log of road hazards,
each with a timestamp, coordinates, and duration.

We would like the same hazard pro�le to be applicable to any
map without modi�cation, so that we can generate hazard traces
for two di�erent cities with similar statistical characteristics. Hence
the parameters and constraints speci�ed in the hazard pro�le are
independent of the map (e.g., New York or Cologne). For a certain
hazard type e , we specify a parameter βe , and a list of road types it is
allowed to occur on. On each road segment, its Poisson parameter is
λe = βe ·area. For each time unit, we generate events for each road
segment and each hazard type independently. �e �nal outputs are
merged and sorted by time for playback.

4.4 Sensing Model
�e simulated vehicles in our system execute the complete LiveMap
application logic and protocol explained in Section 4.2. �ey do
not, however, execute real video analytics code to detect hazards.
To use real analytics code, the simulation framework would need
to generate realistic camera views, including realistic portrayals of
synthetic hazards and other vehicles in the system, for each vehicle
at each timestep, and then execute the relatively expensive analytics
algorithms to detect the hazards. �is would be impractical, and
greatly limit the scalability of the simulation.

Since we are primarily interested in testing scalability of the
the LiveMap system, and not accuracy of analytics, we instead use
a simple, fast sensing model to decide when simulated vehicles
detect hazards. We assume each vehicle is equipped with multiple
cameras that can view in all directions. �e in-vehicle cloudlet is
assumed to perform computer vision algorithms to detect events of
interest (e.g., stopped cars, obstacles, etc.). �e feasibility of such
analytics is demonstrated in Section 6. Our model approximates
sensing with omnidirectional cameras: within a con�gurable radius
(50 m default), any hazard is assumed to be seen and detected. At
each simulation step for each vehicle, the list of currently active



hazards from the generated trace is consulted, and a sublist of active
hazards within the detection radius of the vehicle’s current position
are returned by the simulated analytics. Other application logic
decides if these need to be reported to the zone cloudlet, according
to a variety of policies explored in Section 5.3.

5 Zone Cloudlet Prototype and Evaluation
To study our ideas on improving scalability and bandwidth use of
automobile-based sensing, we have implemented a prototype of a
zone cloudlet that serves a large collection of in-vehicle cloudlets at
city or county scales. Although we test this server prototype with
simulated in-vehicle cloudlets, the design and implementation of
the server is fully independent of the simulation framework. �e
same server prototype can serve a large collection of real vehicles
without modi�cation. �is feature is valuable when we extend the
simulation to include real vehicles in the future.

As cellular bandwidth is the scarce resource in the system, we
use this prototype to explore ways to lower the bandwidth needed.
We seek quantitative answers to the following questions:

• How much bandwidth do LiveMap updates consume?
• How e�ective are di�erent bandwidth thro�ling policies?
• What is the bandwidth-accuracy tradeo�?
• How well do caching and cache-based policies perform?
• How close can we get to the theoretical lower bound?

5.1 Zone Cloudlet Implementation
�e zone cloudlet service is a typical TCP server wri�en in Python.
�e service listens for incoming communications from vehicles, and
sends messages to concurrent handlers for processing. Although
there may be tens of thousands of active vehicles, only a small
fraction of them will be in communication with the zone cloudlet
at the same time, limiting the level of concurrency needed. �ese
handlers update an in-memory Redis database [3] of the current
state of the world. Each current road hazard is stored as an entry
in the database, and an index of its location is created to facilitate
fast search. We use the Gevent library [1] to provide a coroutine-
based concurrency implementation underneath a thread-like API.
Since the service is I/O bound, the coroutine approach works well.
When the workload fully utilizes one CPU core, we spawn multiple
processes of the same server and use a HAProxy load balancer [2]
to coordinate them. We separate the information �ow into two
phases, data acquisition and data dissemination, and study them
separately. Data transferred for acquisition is mostly on the uplink
and data for data dissemination is mostly on the downlink.

�e most naı̈ve approach for data acquisition is to let vehicles
report every road hazard they observe to the zone cloudlet. �is
approach provides the most accurate map (high coverage and low
staleness), but transfers the most bytes and consumes the most
bandwidth. We call this approach upload-all and use it as a base-
line. �e other extreme is the una�ainable but ideal oracle-driven
approach, where each hazard is reported exactly once, and on the
earliest observation. �is gives a lower bound on the bandwidth
demand of any approach that provides full coverage.

We design and implement three other data acquisition approaches.
�e �rst is a probabilistic approach called upload-X%. With this

(a) OpenStreetMap (b) Extracted SUMO road network

Figure 6: Parts of the Map in the Cologne Dataset

approach, whenever a vehicle observes a hazard, it throws a die to
decide whether or not to report this hazard. �e upload happens X%
of the time, statically con�gured across all vehicles. �e second ap-
proach, throttle-by-traffic, uses a dynamic upload probability
that is inversely proportional to the vehicle density in a 50m x 50m
grid cell. �e zone cloudlet tracks the tra�c density of each cell,
based on reports from the vehicles as they enter a new grid cell,
and sends this aggregated information back to the vehicles.

�e third approach is deterministic. �e throttle-by-cache
approach requires vehicles to maintain a cache of the live map
of the surrounding area. �e cache contains a subset of the map
grid cells where each cell is 50m x 50m. When vehicles observe
a hazard, they consult their cache and only upload new observa-
tions. To keep the cache up to date, vehicles refresh their cache
when leaving the cached area, or when they receive an invalidation
callback from the zone cloudlet indicating the cache may be stale.
�e callback mechanism is implemented on top of a modi�ed Paho
MQTT library [13], a low-bandwidth publish-and-subscribe system
for IoT applications. We modify its asynchronous I/O multiplex-
ing mechanism from select to poll to work for the scale of our
experiments. �e Pub/Sub channels correspond to grid cells. �e
vehicles subscribe to channels related to the cells in their cache,
and the zone cloudlet publishes “cache invalid” messages to the
corresponding channels when appropriate.

In addition to maintaining a live map, the zone cloudlet dissemi-
nates the acquired information to vehicles. If the network supports
broadcast messages, the most e�cient way to disseminate data is
to broadcast a message to all vehicles when the zone cloudlet �rst
learns about a road hazard. If broadcast is not available, a substitute
can be emulated broadcast: the zone cloudlet sends one message
to each vehicle for every road hazard. Dissemination can also be
done with callback caching. With callback caching, the vehicles do
not know about all hazards on the map, but they know the ones
in their surroundings. With the throttle-by-cache acquisition
option, callback caching is automatically assumed.

5.2 Experimental Setup
We run our zone cloudlet services and vehicle simulation framework
in two virtual machines (VMs) on the same physical host, emulating
near-perfect networking between vehicles and the zone cloudlet.
�e tradeo� between �delity and scalability/practicality is discussed
in more detail in Section 3. �e host machine is a server with two
Intel®Xeon®E5-2699 v3 processors (2.30 GHz, turbo 3.6 GHz, total
of 36 cores, 72 hyper threads) and 128 GB memory. �e zone
cloudlet VM is con�gured with 4 GB memory and 8 VCPUs, and



Figure 7: Tra�c Statistics of TAPAS Cologne Dataset

Map area 1110 sq km
Vehicle total 462,000 vehicles
Peak tra�c 14,000 vehicles

Median trip length 11 minutes

Figure 8: Summary of the Cologne Dataset Statistics

the simulation VM is con�gured with 8 GB memory and 32 VCPUs.
�ese are ample resources for our experiments.

We use the TAPAS Cologne dataset (introduced in Section 3.3)
for our experiments unless otherwise speci�ed. Figure 6 shows the
OpenStreetMap excerpt as well as the extracted road network for
SUMO corresponding to this dataset. As suggested by the dataset
provider, we reduce tra�c demands to 30% of the realistic value to
avoid city-wide tra�c jams. �is is a limit of the dataset itself and
the current tra�c simulation technology. Even with this reduction,
it is still the largest available dataset to the best of our knowledge.
Figure 7 shows the number of vehicles in the simulation as the
simulation progresses. �e rush hours are 6 am to 8 am and 4:30 pm
to 8pm. �e number of vehicles peaks at 7 am with around 13,000
vehicles and again at 6 pm with around 14,000 vehicles. Figure 8
shows a summary of statistics about this dataset.

We measure the bandwidth consumed, bandwidth e�ciency, and
the accuracy of the live map constructed. Bandwidth e�ciency is
measured by duplication, the percentage of messages that repeat
previously-reported information. A few (two to three) messages
for a particular hazard are useful in helping the zone cloudlet verify
crowd-sourced information and resolve con�icts. �us, a good du-
plication value may be between 50% and 67%, while a much higher
one means a waste of resources. LiveMap accuracy is described by
hazard coverage, the percentage of road hazards that are reported
to the zone cloudlet, and information staleness, the average latency
between when a road hazard appears and when the zone cloudlet
receives the �rst report about it.

A 2.0 MB video �le is submi�ed with each hazard report, equiva-
lent to approximately 10 seconds of SD video or 2.4 seconds of HD
video. [17]. Experiments are run three times with di�erent random
seeds, and median results presented. �e simulation step is set to
200 ms to account for the computing time of LiveMap. Fidelity is
slightly sacri�ced for scalability and practicality of the simulation.

5.3 Bandwidth Saving - Acquisition
Figure 9 shows how the di�erent approaches perform. �e base-
line approach, upload-all, has the best map accuracy and largest

Peak Bytes Dupli- Cover- Stale-
Approach BW Sent cation age ness

(Mbps) (GB) (minutes)
upload-all 1362 77 98% 100% 1.9

upload-50% 657 38 97% 95% 2.6
upload-10% 295 7 90% 73% 4.1

thro�le-by-tra�ca 809 63 98% 98% 2.1
thro�le-by-cacheb 1037 17 89% 100% 2.0

oracle-driven 153 2 0% 100% 1.9
a�e number of tra�c update messages is very large. 16% of the messages

are not sent because of the limited number of threads in the simulation.
b�e simulation step is relaxed to 500ms to account for more computing time.

Figure 9: Bandwidth Saving Techniques for Data Acquisi-
tion (Cologne Scenario)

resource consumption by de�nition. �e 1.9-minute staleness is
mostly due to the time between when a hazard appears and when
the �rst vehicle passes the area and notices it. �e upload-50%
approach lowers the peak bandwidth and bytes transferred approx-
imately by half, at the cost of 3% on coverage, and 0.7 minute of
staleness. upload-10% further reduces the peak bandwidth and
bytes transferred to 10% of that of the baseline. 73% of the road
hazards still get reported with 4.1-minute staleness. By controlling
the upload probability in upload-X% approaches, we can tune this
simple approach to �t di�erent network bandwidth budgets with
modest sacri�ce of map accuracy.

�e throttle-by-traffic approach has near-perfect hazard
coverage and staleness. �is approach signi�cantly reduces peak
bandwidth, but not the total bytes transferred. Typically peak
bandwidth is required when many vehicles are in the area when
a hazard appears, and multiple vehicles simultaneously report it.
With throttle-by-traffic because of high vehicle density, these
vehicles upload with only a small probability, thus signi�cantly
reducing peak bandwidth. As peaks do not occur very o�en, the
total bytes transferred mostly depends on the other situations where
the vehicle density is smaller. Whenever the vehicle density is below
50 vehicles per cell per hour, vehicles report all detected hazards.
So this approach does not signi�cantly save bytes transferred.

�e throttle-by-cache also has near-perfect coverage and
staleness. It reduces the total bytes transferred to 22% of that of the
baseline, including the extra bytes needed to fetch and maintain
cache. A hazard that has already been reported by another vehicle
is not likely to be reported again. However, this does not reduce
peak bandwidth signi�cantly. When a hazard appears in a high-
tra�c area, multiple vehicles may report it before there is time
for the information to appear in their caches, contributing to peak
bandwidth and duplication. Although throttle-by-cache has the
least duplication other than oracle, it is still signi�cant at 89%.

�e throttle-by-traffic and throttle-by-cache approaches
are both very useful because of their high accuracy, as shown by
coverage and staleness. �ey are also e�cient in reducing peak
bandwidth and total bytes transferred separately. A combination
of them might be able to reduce both peak bandwidth and bytes
transferred at the same time, while providing high accuracy. We
are exploring this possibility in continuing studies.
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Figure 10: Upload-X% Tradeo� (Cologne Scenario)

Technique Bytes Transferred
Broadcast 61 KB

Emulated broadcast 567 MB
Callback caching 524 MB

Figure 11: Bandwidth Saving Techniques for Data Dissemi-
nation (Cologne Scenario)

5.4 Sensitivity to Acquisition Parameters
Some of the above approaches have tunable parameters that may af-
fect the performance of the approach, such as the upload probability
in upload-X% and the inverse proportion coe�cient in throttle-
by-traffic. �ese parameters serve as tuning knobs of the trade-
o� between resources consumed (characterized by peak bandwidth
and bytes transferred) and map accuracy (characterized by coverage
and staleness). When these parameters change, it is straightfor-
ward to expect peak bandwidth and bytes transferred to change
approximately proportionally. But it is di�cult to predict how other
metrics change, as the relationship is not linear.

We take upload-X% as an example to study this tradeo�. We
experiment with varying values of upload probability and present
the tradeo� curve in Figure 10. As we lower the upload probability,
fewer bytes are transferred and fewer hazards are covered, and it
takes longer for the zone cloudlet to learn about hazards. �e �rst
half of the bytes can be saved at a low cost of coverage and staleness.
To further reduce the bytes transferred to a quarter of its original
value, the staleness has to increase from 1.9 minutes to 3.3 minutes
and coverage decreases from 100% to 87%. Further reduction in
the number of bytes transferred comes at an even larger cost. �e
“knees” of the curves suggest a good operating range between 10 GB
and 40 GB transferred, which corresponds to an upload probability
between 10% to 50%. In this range, coverage is between 74% to 96%
and staleness ranges from 2.6 to 4.1 minutes.

5.5 Bandwidth Saving - Dissemination
Figure 11 shows the performance of the data dissemination ap-
proaches. Surprisingly, similar numbers of bytes are transferred
for callback caching and emulated broadcast. �is is due to coarse-
grain cache invalidation; if any cells change, vehicles will refresh the
whole cache. �ese design choices reduce the number of messages
sent, but transfer extra bytes for refreshing up-to-date portions
of the cache. If we make caching granularity smaller and have
vehicles only refresh the invalid cells, we will able to reduce this

Approach Peak Bytes Dupli- Cover- Stale-
BW Sent cation age ness

(Mbps) (GB) (minutes)
upload-all 2077 61 99% 100% 1.3

upload-10% 235 6 95% 84% 3.6
thro�le-by-tra�ca 792 61 99% 100% 1.3
thro�le-by-cache 1186 3 74% 100% 1.3
a2% of the messages are not sent due to limited number of threads in the simulation.

Figure 12: Bandwidth Saving Techniques for Data Acquisi-
tion (Luxembourg Scenario)

overhead signi�cantly. If caching granularity is too small, the sys-
tem will su�er from frequent ine�cient small fetches of data. We
will investigate the optimal cache granularity in continuing studies.

5.6 Sensitivity to Input Tra�c Model
To verify the generalizability of our previous results, we run the
same experiments on another input model, the Luxembourg SUMO
Tra�c Scenario [10]. It features a map of the Luxembourg City and
tra�c in this area for a whole day. �e tra�c pa�erns are synthe-
sized with the SUMO ACTIVITYGEN tool, which takes detailed
demographics data as an input. �e dataset provides four variants
of the tra�c model with di�erent mobility models and tra�c light
models. We choose the variant with the most tra�c and run the
experiments from 6 am to 9 am. �e peak tra�c is around 5200
vehicles at 8 am.

Figure 12 shows that the results are similar to those from the
Cologne experiments. upload-10% reduces peak bandwidth and
bytes transferred to 10% of their baseline values as expected. 84%
of the hazards still get reported to the zone cloudlet, which is
higher than that in the Cologne scenario, and it takes 2.3 minutes
longer than the baseline for the zone cloudlet to learn about haz-
ards. �e throttle-by-traffic approach has perfect coverage
and staleness, and signi�cantly reduces peak bandwidth to 32% of
the baseline. �is reduction is much bigger than in the Cologne
scenario. On the other hand, bytes transferred are not saved, unlike
in the Cologne case. �ese di�erences may be due to the di�erent
tra�c pa�erns of the two scenarios. Despite the di�erences, this
approach is e�ective in signi�cantly reducing peak bandwidth in
both scenarios. throttle-by-cache still has the perfect coverage
and staleness as expected. Comparing to the baseline, only 5% of
the bytes are transferred. Peak bandwidth is also reduced by half.

Experiments on more input models can give us more insights.
Unfortunately, to the best of our knowledge, there are no other large-
scale per-vehicle tra�c datasets publicly available. However in gen-
eral, we believe throttle-by-traffic will consistently be more
e�ective at reducing peak bandwidth, and throttle-by-cache
will be more e�ective at reducing total bytes transferred. We plan
to study hybrid approaches that combine these ideas.

6 Feasibility of In-vehicle Hazard Detection
Computer-vision based video analytics to detect road hazards is
a critical component of LiveMap. Such analytics need to be fast
enough to run on the in-vehicle cloudlets, yet provide reasonably
good accuracy. False positives will result in unnecessary updates



Dataset # of Images Labeled by
Google Deer Dataset 340 us

ImageNet Deer Dataset 691 ImageNet
Google Pothole Dataset 34 us

ImageNet Pothole Dataset 267 us

Figure 13: Summary of Training Datasets

Figure 14: Examples of Deer Detection Results

and video transmi�ed to the zone cloudlet, wasting precious band-
width. On the other hand, with too many false negatives, hazards
are not detected and the system becomes useless. In this section,
we demonstrate the feasibility of in-vehicle hazard detection by
implementing a fast, reasonably accurate system for detecting deer
and potholes.

Our implementation uses the state-of-the-art, neural-network-
based Faster R-CNN [22] algorithm. To generate training data,
we manually labeled deer and potholes in the videos and images
found from the web. We employ the transfer learning approach [19]
to reduce the total number of hand-labeled training images and
total amount of training time needed for our detector. Figure 13
summarizes the datasets we used for training.

Running on a machine with a modern NVIDA Tesla K40 GPU,
our detectors are able to operate at 7 frames per second (FPS). �is
con�rms that today’s computing technology is able to process video
streams fast enough for LiveMap. �e two proof-of-concept hazard
detectors described below are representative of what is achievable
today. Any computer vision work that improves road hazard detec-
tion will complement our work. When be�er detectors are available
(for example, those created by entities such as RoadBotics [4] and
Lost And Found [20]), they can be easily plugged into LiveMap to
improve the accuracy and speed of hazard detection.

6.1 Example: Deer Detection
Obtaining appropriate data for training the object detector is a non-
trivial task. A simple online search o�en returns images that do

Figure 15: Examples of Pothole Detection Results

not have the right camera view for a vehicle mounted camera. �is
could lead to low detection accuracy. �erefore, we had to manually
�lter images to �nd ones with the right views (e.g., dashcam views)
before including them in the training dataset. Our training data
for deer detection comes from two sources. We �rst searched for
“deer on road” in Google Image Search, and manually selected and
annotated 340 valid images (Figure 13). We then included 691
annotated deer images from ImageNet [11]. Videos from YouTube
did not provide good training data, as many of them are compilation
videos deer-car collisions, without normal poses and views of deer.

In the precision-recall curve of a 10-fold cross-validation, the
area under the curve of our detector is 87.8%. �is is compara-
ble to the reported accuracy of state-of-the-art object detection
work today [22]. Figure 14 shows the detection results on exam-
ple frames from a 2-minute YouTube dashcam video [21]. �e
full video with annotations of detection results can be found at
h�ps://youtu.be/ GrP42359z8.

6.2 Example: Pothole Detection
Using a similar procedure as we followed for deer detection, we
obtain several thousand images of potholes from ImageNet and
Google. However, potholes are much harder to detect than deer, due
to their greater variation in shape, and change in appearance with
distance and viewing angles. �e potholes at a distance can also be
really small, only a few pixels in each dimension. �is required us
to perform a more careful screening of our raw dataset based on
viewing angle, �nally resulting in 267 images from ImageNet and 34
images from Google (Figure 13). To help reduce false positive rate
with this fairly small set of images, we included the deer images as
negative samples in our training set for the pothole detector.

Our trained pothole detector is sensitive to the viewing angle and
distance to the pothole. So on still images, it typically only detects a
subset of potholes. However, it performs well on YouTube dashcam
videos like in Figure 15. A full video with annotated potholes can be
found at h�ps://youtu.be/U7 QAVbiF8U. Although some potholes
may not be detected at a distance, they will likely be caught when
the vehicle moves closer, leading to a hazard report in subsequent
frames. In the video mentioned above, 913 unique potholes appear
and 74% of them are detected in at least one frame. In addition, of
the reported potholes, 75% are true positives.

https://youtu.be/_GrP42359z8
https://youtu.be/U7_QAVbiF8U


7 Conclusion
A live, continuously-updated map overlayed with road conditions
and hazards can provide the situational awareness needed to enable
self-driving vehicles, empower human drivers and optimize city
services. We have proposed LiveMap, an automated approach to
this goal that employs in-vehicle processing of video and sensor
data to detect road conditions, and uses a central zone cloudlet to
manage, aggregate, and disseminate a uni�ed view onto regional
conditions. We have shown that LiveMap can scale to city or county
scales within the limits of today’s 4G LTE network bandwidth.
We have also demonstrated the feasibility of in-vehicle computer-
vision-based hazard detection.

Our evaluations of LiveMap are based on a novel mixed simu-
lation framework that allows real implemented components and
simulated ones to operate together. �is e�ectively provides us the
best of both worlds, allowing us to test real components and code, at
system scales only practical in simulation. A key necessary require-
ment is that our simulation framework executes in real time. We
are able to meet the real-time requirements at city scale simulation.
Looking ahead, further scaling is limited by the single-threaded
architecture of the core SUMO tra�c simulator. To scale real-time
simulation to hundreds of thousands of vehicles, signi�cantly faster
processor cores or an e�cient multi-threaded implementation of
SUMO will be needed. Finally, to be�er understand how LiveMap
performs in the real world, we hope to deploy real vehicles instru-
mented with cameras, and in-vehicle cloudlets, and to construct a
fully-operational instance of LiveMap.
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