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Abstract—The growth of edge computing depends on large-scale deployments of edge

infrastructure. Benchmarking applications are needed to compare the performance

across different edge deployments and against device-only and cloud-only

implementations. In this article, we present OpenRTiST, an open-source application

that is simultaneously compute-intensive, bandwidth-hungry, and latency-sensitive.

It implements a form of augmented reality that lets you “see the world through the eyes

of an artist.” We compare end-to-end application latency over varying network conditions

andmeasure performance across a variety of edge platforms. OpenRTiST is designed to

be easily deployed and has been used to showcase the benefits of edge computing.

& FOR EDGE COMPUTING to become an everyday

reality, there is a need to quantitatively charac-

terize the end-to-end path from a mobile or IoT

device to its currently associated edge comput-

ing node or cloudlet1. This is especially true in

the case of edge-native applications that require

low latency and/or bandwidth scalability of

edge-offloaded computation 2. The end-to-end

path includes many components: (a) capture,

preprocessing, and encoding of image frames at

the device; (b) network transmission to the

cloudlet; (c) processing at the cloudlet; (d) net-

work transmission of the result; and (e) render-

ing/display at the device. The term motion-to-

photon latency is used to refer to the total delay

experienced along this entire path. It is directly

correlated with the subjective quality of user

experience (QoE) for latency-sensitive appli-

cations such as augmented reality (AR). Today,Digital Object Identifier 10.1109/MPRV.2020.3028781
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there does not exist any widely used benchmark

for this class of applications. The performance

bottleneck on the end-to-end path determines

system throughput.

Given the many variables on the end-to-end

path and their complex inter-relationships, we

do not yet know how to analytically predict the

expected behavior of a specific AR/gaming appli-

cation running on a specific device in a given net-

working and cloudlet setting. Experimentation

with the actual application in the specific edge

computing setting (i.e., using the real device,

cloudlet, and network) is the only sure way to

obtain rigorous results. However, in many cases,

the application software may still be under

development and may not be available in final

form for many months. The ability to use an

existing edge-native application as a stand-in for

the real application is valuable in these circum-

stances. Parameterization of the stand-in appli-

cation to generate different levels of bandwidth

demand and cloudlet processing demand is also

valuable because it enables sensitivity analysis

in the face of uncertainty.

Toward these goals, we have created and

open-sourced OpenRTiST, an edge-native inter-

active application that performs a computation-

ally expensive real-time transformation of a live

video feed. Similar to other AR applications,

OpenRTiST has a high network load in both

directions. Thus, OpenRTiST is simultaneously

compute-intensive, bandwidth-hungry, and

latency-sensitive. This trifecta of attributes

offers the most compelling rationale for edge

computing 3. OpenRTiST is simple to understand

and easy to deploy, yet offers visceral impact

and intuitive insights into edge computing. Most

importantly, it can be used as a workload genera-

tor in controlled benchmarks to measure

motion-to-photon latency, estimate scalability,

and identify performance bottlenecks.

The core functionality of OpenRTiST is style

transfer, a well-known computer vision technique

for transforming images 4,5. Offline machine learn-

ing is used on a reference image (such as a famous

painting) to extract its stylistic essence, and

embody it in a deep neural network (DNN).

Through runtime inferencing on this DNN, the

scene captured by a video camera is transformed

in real time to acquire the stylistic attributes of

the learned image [see example in Figure 1(a)].

This transformed output can be displayed on a big

screen for easy viewing by large groups of people,

on a smartphone for personal viewing, or on a

head-up display to give an immersive experience.

Image resolution and frame rate can be easily-

tuned to vary the network and compute load gen-

erated by OpenRTiST. In the rest of this article, we

describe the design, implementation, and evalua-

tion of OpenRTiST.

SYSTEM ARCHITECTURE

Overview

OpenRTiST, which stands for Open Real-Time

Style Transfer, uses neural style transfer (NST)

to transform a live video stream by “painting” it

in the style of a reference painting. NST is a com-

puter vision technique first proposed by Gatys

et al. 4 that leverages a DNN to first extract the

stylistic essence of a reference image and then

blend it with a content image to create an output

image that looks like the content image painted

in the style of the reference image. Our imple-

mentation is based on an efficient NST imple-

mentation and training methodology described

by Johnson et al.5 and made available as an

open-source PyTorch module. The DNN consists

of 16 convolutional layers, and requires approxi-

mately 23.7 � 109 operations to compute the

Figure 1. Example and architecture of OpenRTiST.

(a) OpenRTiST example. (b) System architecture.
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stylized output for a 320�240 image. Since Open-

RTiST applies style transfer to a live stream of

frames instead of individual images, we modified

the training algorithm to preserve the consis-

tency of appearance across frames and reduce

flickering effects.

To execute OpenRTiST in real time in a mobile

context, we leverage the Gabriel framework,

which is designed to minimize the latency of

computational offloading in the context of wear-

able cognitive assistance applications6. Figure 1

(b) shows the system architecture of OpenRTiST.

Frames captured by the client device are trans-

mitted to the server. The server runs this frame

through the DNN and sends the resulting frame

back to the client to render on the user’s display.

Our server runs two POSIX processes. The

Gabriel process runs a websocket server to com-

municate with clients, and it manages flow con-

trol. The OpenRTiST engine process implements

the style transfer component, using a trans-

former DNN. Users can control the resolution of

images, which will affect the amount of computa-

tion done by the transformer DNN.

OpenRTiST’s attributes make it a good work-

load to benchmark the performance of edge plat-

forms for AR-like applications. First of all, the

application is computationally demanding and

prohibitively expensive to run in a mobile con-

text without computational offload. As both

input and processed images are transferred

across the network, it is bandwidth-intensive on

both the uplink and downlink. Furthermore, as a

real-time application, OpenRTiST is latency-

sensitive: Any lag in displaying the processed

results is obvious to a human observer.

Supporting Edge and Device Heterogeneity

Cloudlets can span a broad spectrum of form

factors with varying capabilities, from rack servers

with powerful discrete GPUs to nettops, such as

Intel NUC. To support DNN inference on a variety of

platforms, OpenRTiST uses the PyTorch7 frame-

work by default. This framework has been well opti-

mized for discrete Nvidia GPUs, and recent versions

take advantage of the Intel Math Kernel Library for

Deep Neural Networks (MKL-DNN) to efficiently uti-

lize vector operations onCPUs.

Alternatively, OpenRTiST can utilize the

Intel OpenVino toolkit8. The toolkit enables

heterogeneous execution of DNNs across a wide

variety of Intel hardware such as CPUs, inte-

grated GPUs (iGPU), Movidius VPUs, and some

FPGAs, although, to date, we have focused our

testing on CPUs and iGPUs.

Likewise, on the client-side, OpenRTiST can

run on various target devices. An Android client

supports phones, tablets, and some wearable

devices. A Python client can run on most nonmo-

bile systems, enabling large, multiviewer demos

on projected or flat-panel displays.

Performance Metrics

The performance of an edge-native applica-

tion is dependent on several variables such as

the client device, the network quality, and the

computational power at the server.

There are three types of latency used in this

article: round-trip time (RTT), end-to-end (E2E)

latency, and motion-to-photon (MTP) latency.

These terms are defined as follows:

� RTT: Just the round-trip network latency,

nothing else;

� E2E: RTT + server compute time;

� MTP: device capture + E2E + device display.

In the “Evaluation” section, we evaluate the

performance of OpenRTiST for different client

and server configurations over different network

topologies by capturing metrics, such as band-

width utilization, E2E, and MTP latencies.

EVALUATION

Experimental Setup

We investigate the performance of OpenRTiST

on different edge and cloudplatforms overWiFi and

LTE networks. Table 1 summarizes the hardware

configuration of the platforms used in the experi-

ments. We use four different cloudlets to evaluate

edge performance. Cloudlet-GPU1 and Cloudlet-

GPU2 are two similarly powerful servers with dis-

crete GPUs. We also include Cloudlet-iGPU, a small

form factor edge server based on an Intel NUC con-

taining an integrated GPU as well as a Cloudlet-CPU

server-grademachinewith no graphics card.

To evaluate the performance of offloading to

the cloud, we use two instances with different net-

work latency characteristics in Azure East US and
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AzureWest US, both with NVIDIA Tesla P100 GPUs.

The NVIDIA Tesla V100 GPU on Cloudlet-GPU1 has

better inference performance characteristics as

compared to the Pascal GPUs utilized by the cloud

instances. In contrast, the NVIDIA GTX 1080 Ti GPU

on Cloudlet-GPU2 is approximately 30% slower

than those used by the cloud instances. In the

“Network Effects on End-to-End Latency” section,

we see that lower network latency to the edge

results in higher throughput using Cloudlet-GPU2

as compared tomore powerful cloud servers.

The workload of OpenRTiST can be modified

by configuring the frame resolution and/or the

frame rate of capture. We tested the perfor-

mance of OpenRTiST for video feeds with a 4:3

aspect ratio at 30fps and varying resolutions of

240p, 360p, 480p, and 720p.

Performance on Edge

In this section, we explore the performance of

running OpenRTiST on the four edge platforms

mentioned in the “Experimental Setup” section.

We run OpenRTiST using the PyTorch frame-

work on Cloudlet-GPU1 and Cloudlet-GPU2 and

we utilize OpenVino on Cloudlet-iGPU and Cloud-

let-CPU. We also run OpenRTiST on an Essential

smartphone (PH-1) to measure the performance

of OpenRTiST in a device-only setting.

Table 1 summarizes the results, showing

mean and standard deviation for processing

time as well as E2E latency for an input feed of

240p. Running OpenRTiST on a reasonably per-

forming smartphone takes about 4 s of process-

ing per frame, making it prohibitive to run

without offloading. Running OpenRTiST on CPU-

only devices is also problematic, with the mean

E2E latency surpassing 100 ms on Cloudlet-CPU.

Low latencies can only be reliably achieved on

edge devices with hardware acceleration, such

as a discrete or integrated GPU.

Network Effects on End-to-End Latency

The E2E latency as observed by the user is

affected by both the computational processing

time on the server as well as the network condi-

tions between the client and the server. In this sec-

tion, we evaluate the performance of OpenRTiST

over different network technologies (WiFi and

LTE) as the network distance is increased. Figure 2

(a)measuresOpenRTiST’s performance for a 240p

resolution video feed running on a cloudlet

instance located near the client (Cloudlet-GPU2)

as well as against two increasingly remote cloud

instances, Azure East US and Azure West US. For

the user device, we use an Essential Phone (PH-1)

configured to capture 320� 240 resolution frames.

To reach the cloudlet over cellular data, weuse

an experimental LTE network, indicative of future

5G CBRS Band 48 networks. It is comprised of

three small cells and a virtualized RAN that are

connected via optical fiber. This allows us to be a

single hop away from the computational

Table 1. Hardware Used in Experiments and Performance on 240p Frame.

Type Name CPU GPU
Processing

time (ms)

E2E latency

(ms)

Edge
Cloudlet-GPU1

(PyTorch)

2� Intel Xeon Gold 6144, 8 cores

@ 3.50GHz

NVIDIA Tesla

V100
10 24 (4)

Edge
Cloudlet-GPU2

(PyTorch)

2� Intel Xeon E5-2699v3, 18

cores @ 2.30GHz

NVIDIA GTX

1080 Ti
21 39 (9)

Edge
Cloudlet-iGPU

(OpenVino)

Intel Core i7-6770HQ, 4 cores @

2.60GHz
Integrated 36 (1) 75 (8)

Edge
Cloudlet-CPU

(OpenVino)

2� Intel Xeon Gold 5115, 16

cores @ 2.40GHz
- 77 (6) 119 (14)

On-

device
Essential Phone 8 core Kryo 280 @ 2.45GHz - 3887 (551) 3887 (551)

Cloud Azure East US
Intel Xeon E5-2690v4 6 cores @

2.60GHz

NVIDIA Tesla

P100
13 58 (27)

Cloud Azure West US
Intel Xeon E5-2690v4 6 cores @

2.60GHz

NVIDIA Tesla

P100
13 105 (72)
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resources in our lab. The network operates in the

3.5GHz spectrum (band 42), and only a fewphones

such as an Essential Phone (PH-1) can connect to

it. We use a commercial 4G LTE network (T-

Mobile) to reach the Azure cloud datacenter.

Figure 2(b) illustrates how the higher laten-

cies of LTE cause the response time CDF curves

to shift to the right of the results achieved over

WiFi. In both cases, offloading to Cloudlet-GPU2

provides the best response times despite its

GPU being less powerful than those of the cloud

instances. The lower network latency to the

cloudlet offsets its slower frame processing

capabilities to give better response time.

Payload Size

The network and compute load of Open-

RTiST can be adjusted by tuning the resolution

and framerate of the video feed. In this section,

we explore how image quality affects E2E

latency and network bandwidth. Table 2 sum-

marizes the average bandwidth utilization and

E2E latency of various image resolutions for

OpenRTiST’s backend running on Cloudlet-

GPU1. The video feed is captured at 30fps. Prior

knowledge of the offered bandwidth of an appli-

cation for different image quality can help adapt

the payload in the presence of congestion or to

support scalability.

Figure 3 shows the E2E latency of OpenRTiST

for video feeds with a 4:3 aspect ratio across

varying resolutions of 240p, 360p, 480p, 720p,

and multiple offloading edge and cloud plat-

forms. For a 240p resolution video feed, the

response time at the slower Cloudlet-GPU2 is

1.5� faster than the Azure East server and

almost 3� faster than the Azure West server. As

noted in the previous section, the lower network

latency to the cloudlet gives the best E2E perfor-

mance even when requiring longer server-side

processing.

Figure 2. E2E latency over WiFi versus LTE. (a) E2E

latency of OpenRTiST in milliseconds. (b) Cumulative

Distributive Function of E2E latency.

Table 2. Bandwidth and E2E Latency on Cloudlet-GPU1.

Resolution Avg. request size Avg. response size BW to/from Cloudlet E2E latency (ms)

(kB) (kB) (Mb/s) Median 90%

240p 9.89 11.56 1.98 / 2.32 23.0 26.0

360p 16.22 23.02 2.97 / 4.22 44.0 48.4

480p 23.11 37.87 3.86 / 6.32 65.6 72.1

720p 40.83 80.11 4.36 / 8.56 165.0 186.7

Figure 3. E2E latency breakdown over WiFi.
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Motion-to-Photon Latency

A more relevant metric than E2E latency for

AR or gaming applications is MTP latency. This

metric is defined as the elapsed time between a

user movement and when the response to that

action is rendered on the screen. High MTP

latency leads to the user’s perception that the

transformed video is delayed.

MTP latency differs from E2E latency in that

camera and display lag are also included. A slow

camera and display can hurt MTP latency (and

hence user experience) even when edge comput-

ing is used to achieve low E2E latency. In fact,

the results shown in Figure 4(c) illustrate pre-

cisely this point.

We measured OpenRTiST’s MTP latency

using the mobile client, a flashlight, and a sepa-

rate observer camera, as shown in Figure 4(a).

The observer camera simultaneously captures

the flashlight both directly and through Open-

RTiST’s display on the mobile phone. As shown

in Figure 4(b), we analyze the captured video to

determine when the light appears and when it is

captured on the client’s display. As the observer

camera captures at 60 fps, the granularity of

measurement is 17 ms.

Figure 4(c) shows the MTP latency results

when OpenRTiST is offloaded to different edge/

cloud locations over WiFi. Note that we also

report the No-Op latency, where the scene is

captured and simply displayed by the mobile

phone. This indicates the lower bound on the

latency on the mobile device, due to the cam-

era’s exposure time, sensor and OS overhead,

and rendering/display delay. This high baseline

shows how the application QoE is dependent

on the display device and the need for low-

latency displays.

The MTP latency of 100 ms even for a No-Op

mutes the benefit of edge computing. If a much

better device were to be used (leading to a smaller

value than 100 ms for the No-Op latency), the ben-

efit of edge computingwould bemagnified.

REAL-WORLD DEMONSTRATIONS
OpenRTiST is a good application workload

to benchmark edge deployments. Also, a non-

technical audience can gain first-hand experi-

ence with edge computing using the application

as it is both fun and easy to understand. The

ability to compare a live video stream trans-

formed on a distant cloud and the same video

stream transformed at the edge results in an

immediate appreciation of the value of edge

computing. OpenRTiST’s back-end is encapsu-

lated in a container 9 and the client is publicly

available on the Google PlayStore 10. This easy

onboarding makes OpenRTiST highly conducive

to testing new edge infrastructures. Below are

some examples of how OpenRTiST has been

used to showcase edge computing outside

CMU. Figure 5 shows some of the scenes cap-

tured during the demonstrations.

At the Edge Computing Congress in London

(2019), InterDigital used OpenRTiST to demon-

strate its edge emulation platform called Advan-

tEDGE. Figure 5(b) shows their booth during

the conference. They used OpenRTiST to test

the platform’s location service and evaluate the

impact of network latency on user experience.

Figure 4. Setup and results of MTP latency.

(a) Setup for measuring motion-to-photon latency.

(b) Example frames from observer camera.

(c) Benchmarked motion-to-photon latency.

Edge Computing

6 IEEE Pervasive Computing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

In partnership with Crown Castle, America’s

largest provider of shared communications

infrastructure, we demonstrated OpenRTiST in

May 2019 at the ConnectX Expo 11. The show floor

of this 5G infrastructure conference in Orlando, FL,

was a great place to display the power of edge com-

puting. Hundreds of attendees over a 2-day period

witnessed what edge computing could do in this

setting [see Figure 5 (c) and (d)].

OpenRTiST was also demonstrated as an

exhibit in the lobby of Vodafone Group’s

research lab in Newbury, U.K. To quote Guenter

Klas, Senior Manager R&D at Vodafone Group:

“Vodafone tested OpenRTiST at our HQ in

Newbury, UK to bring edge computing to life for

employees and business partners, in a deliber-

ately non-technical, more engaging way. Art

turned out to be a good channel for this purpose.

The importance of real-time edge computing can

be well conveyed with OpenRTiST.”

Related Work
The Yahoo! Cloud Serving Benchmark 12 and

DCBench 13 contain standardized sets of data-

intensive workloads, designed to profile cloud

services and parts of datacenters. DAWNBench 14

and MLPerf 15 compare the speed and accuracy

of machine learning models with different

parameters and hardware configurations. Edge-

Bench 16 and Defog 17 compare the performance

of running workloads at the edge with running

them in the cloud. Both benchmarks measure

network throughput, latency, and computational

resources used. EdgeBench and Defog both

include neural network inference workloads.

However, their experiments were not conducted

using hardware accelerators. Our experiments

were run using a GPU.

The edge applications 16,17 can be mainly

classified as follows:

1) scalar/sensor applications: where the inputs

are scalar representing sensor data.

2) audio/text applications: where an audio

input stream is transcribed to text.

3) image applications: which take images as

input and returns scalar results.

OpenRTiST is interactive, latency-sensitive, and

it represents the first AR workload used for bench-

marking edge deployments that we are aware of.

Most mobile applications download significantly

more data than they upload, whereas OpenRTiST

is bandwidth-intensive in both directions.

In this article, we consider the full end-to-end

path of OpenRTiST. This starts with capturing an

image from the user’s camera and ends with dis-

playing the transformed version of this image, as

shown in the “Motion-to-Photon Latency” section.

We also benchmark the compute performance,

end-to-end latency, and effective network band-

width used for different resolution settings.

CONCLUSION
We have built and demonstrated OpenRTiST,

an application that is compute-intensive, band-

width-hungry, and latency-sensitive. These attrib-

utes make it an excellent application to perform

end-to-end benchmarking of edge platforms. We

have designed it to be easily deployed in a variety

of contexts and useful in demonstrating the value

of edge computing in a visually interesting and eas-

ily understood manner. OpenRTiST has been

adopted in several industry demonstrations of

edge technologies. Our measurements show that

offload is necessary in mobile contexts and that

cloudlets can significantly outperform cloud

deployments. Furthermore, motion-to-photon

latency is significantly limited by internal delays of

the mobile client itself. We believe improved low-

latency cameras and displays will be required on

futuremobile devices to enable low-latency interac-

tive applications, such asAR.

Figure 5. Demonstrations of OpenRTiST.

(a) OpenRTIST at Vodafone, Newbury, U.K.

(b) Interdigital Demo in London. (c) Event attendees

in Ottawa. (d) ConnectX in Orlando, FL, USA.
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