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Abstract—We show how edge-based early discard of data
can greatly improve the productivity of a human expert in
assembling a large training set for machine learning. This
task may span multiple data sources that are live (e.g., video
cameras) or archival (data sets dispersed over the Internet).
The critical resource here is the attention of the expert. We
describe Eureka, an interactive system that leverages edge
computing to greatly improve the productivity of experts in
this task. Our experimental results show that Eureka reduces
the labeling effort needed to construct a training set by two
orders of magnitude relative to a brute-force approach.

I. INTRODUCTION

Deep neural networks (DNNs) have transformed computer

vision. By supervising the training of DNNs, a domain

expert with no programming skills or computer vision back-

ground can create highly accurate classifiers in domains such

as medical research, ecology, and military intelligence. The

discriminative power of these classifiers can be impressive,

embodying questions that are hard for a human non-expert

to answer. Examples include: “Is this skin lesion melanoma

or basal cell carcinoma?”; “Does this pathology image show

pagetoid spread or nuclear atypia?”; “Is this a caterpillar of

the pest moth Cactoblastis cactorum or of a benign moth?”;

“Is this seismic image indicative of an underground nuclear

explosion or a minor earthquake?”

Through the use of Web-based training tools, a domain

expert can produce highly accurate image classifiers. Vir-

tually all the effort is in assembling a large training data

set, labeling the data, running a long-running batch job to

perform training, and then evaluating the resulting classifier.

The use of DNNs avoids the need to perform explicit feature
extraction, which typically requires creation of custom code

and hence requires programming skills.

The empowerment of domain experts by DNNs introduces

a new problem: namely, how to collect a large enough
training data set and label it. This is the problem addressed

by this paper. DNNs typically need to be trained on thou-

sands of labeled examples before their accuracy reaches

an acceptable level. How many hours will it take for a

domain expert to assemble such a large training data set

for a rare phenomenon? How much junk will she need to

wade through? An expert cannot delegate the task of gener-

ating training data to a less skilled person. Crowd-sourcing

approaches such as those using Amazon Mechanical Turk

(AMT) that have been successful in other contexts [1], [2]

are not applicable here for two reasons. First, crowds are not

experts. By definition, only the expert possesses the depth

of domain-specific knowledge needed to reliably distinguish

true positives from false positives, and avoid false negatives.

Second, access to data sources may be restricted for reasons

such as patient privacy, national security, or business policy.

In this paper, we show how edge computing can be used to

create a human-in-the-loop system called Eureka for human-

efficient discovery of training data from distributed data

sources on the Internet. “Human-efficient” in this context

refers to (a) leveraging human judgement and expertise;

(b) avoiding long stalls awaiting results; and (c) avoiding

overloading the expert with a flood of irrelevant results.

Eureka views user attention as the most precious resource

in the system. This resource is used well if most of it

is consumed in examining results that prove to be true

positives. It is used poorly if most of it is spent waiting for

results, or dismissing frivolous false positives. To this end,

Eureka uses an iterative workflow that starts from a handful

of examples and evolves through increasingly sophisticated

classifiers that lead to discovery of more examples.

This paper focuses on the setting of multiple data sources

dispersed across the Internet. The data source may be live

(e.g., recently-captured video streams from a swarm of

drones, recent sensor data in automated manufacturing, etc.)

or archival (e.g., video from previous drone flights, multi-

year patient records from a large hospital system, etc.). In

this setting, the terms “edge” and “cloudlet” correspond to

their familiar interpretations. However, the concepts under-

lying Eureka are more broadly applicable. In all settings, the

edge is a location that can read from a data source at very

high bandwidth and low latency. A cloudlet is the compute

infrastructure at this location. Archival data may often be

concentrated in a single cloud data center. In that setting,

the data set can be statically or dynamically partitioned into

subsets that are each processed by a different machine in the

data center. Those machines play the role of cloudlets, and

their locations can be viewed as the edge. Eureka concepts

can also be extended to hardware implementations of storage

that embed processing capability. Various forms of “active

disks” and “intelligent storage” have been proposed over

the years, as discussed in Section VII. In that setting, the

embedded processing capability within storage is effectively

the “cloudlet”, and its location is the “edge”.

In all settings, high bandwidth and low latency access to
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Figure 1. Eureka System Architecture

An infectious disease expert has just learned that a shy rodent, long
considered benign, may be the transmitter of a new disease. There
is a need to create an accurate image classifier for this rodent so
that it can be used in public health efforts to detect and eradicate
the pest. The expert has only a few images of the rodent, but needs
thousands to build an accurate DNN. There are likely to be some
untagged occurrences of this rodent in the background of images
that were captured for some other purpose in the epidemiological
image collections of many countries. A Eureka search can reveal
those occurrences. In the worst case, it may be necessary to deploy
cloudlets with large arrays of associated cameras in the field to serve
as live data sources for Eureka.

Figure 2. Example: Infectious Disease Control

data is used by domain-specific code executing on a cloudlet

to perform early discard. In other words, the rejection of

clearly irrelevant data happens as early as possible in the

processing pipeline that stretches from the data source to the

user. With this architecture, the bandwidth demand between

cloudlet and user is typically many orders of magnitude

smaller than the bandwidth demand between data source and

cloudlet. In addition to early discard, Eureka also harnesses

high levels of parallelism across multiple cloudlets. This

speeds up discovery of training data for rare phenomena.

The focus on early discard makes it natural to asso-

ciate Eureka with edge computing rather than cloud-based

settings. This is because of two reasons. First, ingress

bandwidth savings from edge-located sensors is a major part

of the rationale for edge computing. That is precisely what

early discard achieves. In cloud-based settings, the need for

bandwidth savings within a data center is less compelling

because bandwidth is plentiful. The user could simply run

her GUI on a virtual desktop that is located within the data

center, thus completely avoiding large-volume data transfers

out of the cloud. Second, Eureka is able to use both live and

archival data in an edge computing setting. The aligns well

with another aspect of edge computing, which is the ability

to create real-time services on edge-sourced data — early

discard is the “service” in this case.

In summary, Eureka can be viewed as an architecture that

trades off computing resources (e.g., processing cycles, net-

work bandwidth, and storage bandwidth) for user attention.

Edge computing is the key to making this tradeoff effective.

We describe the iterative workflow of Eureka in Section II,

present its design and implementation in Section III, derive

an analytical model of its workflow in Section IV, and report

on experiments in Sections V and VI. We describe related

work in Section VII, and close in Section VIII.

II. DISCOVERY WORKFLOW

Eureka views data sources as unstructured collections of

items. Early in our implementation, an item referred to a

single image in JPEG, PNG, or other well-known format.

We have since extended Eureka to treat a short segment of

a video stream as an item (Section III). We plan to further

extend Eureka to other data types such as whole-slide images

in digital pathology [3], map data from OpenStreetMap, and

other forms of domain-specific multi-dimensional data. In

each case, what constitutes an item will be specific to its

data type. For simplicity, we focus on images in this section.

Structured information, such as a SQL database, may

sometimes be available for a data source. This can be applied

in a pre-processing step to shrink the size of the data source.

For example, when searching medical images, patient record

details such as age, gender, and prior medical history may be

used to reduce the number of images that need to examined

with Eureka. In this paper, we will assume that any possible

pre-processing to shrink data sources has already been done

prior to the start of the Eureka workflow.

Figure 1 illustrates the system architecture for the Eureka

workflow. A domain-specific front-end GUI runs on a client

machine close to the expert. An early-discard back-end

runs at each cloudlet, LAN-connected to its data source.

The back-ends execute in parallel, and transmit thumbnails

of undiscarded images to the front-end. Each thumbnail

includes back pointers to its origin cloudlet and full-fidelity

image on that cloudlet. The expert sees a merged stream

of thumbnails from all back-ends. If a thumbnail merits

closer examination, a mouse click on it will open a separate

window to display the full-fidelity image and its associated

meta-data. Thumbnails are queued by the front-end, awaiting

the expert’s attention. If demand greatly exceeds available

attention, queue back pressure throttles cloudlet processing.

As a working example, consider the scenario described

in Figure 2. Starting from just a few example images, how

can the expert bootstrap her way to the thousands to tens

of thousands of images needed for deep learning? We start

with the premise that the base rate [4] is low — i.e., that the

rodent is rarely seen, and hence there are very few images in

which it appears. If a good classifier already existed, discard-

based search could be used in parallel on a very large number

of cloudlets. The number of false positives would be low,
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Each type of model requires a different number of examples
before its accuracy starts to improve steadily. Their accura-
cies saturate at different levels when sufficient data is given.

Figure 3. Training Data Set Size vs. Accuracy

and the rate of true positives would be reasonably high. The

expert would neither waste her time rejecting obvious false

positives, nor would she waste time waiting for the next

image to appear. Most of her time would be spent examining

results that prove to be true positives. Alas, this state of

affairs will only exist at the end of the Eureka workflow.

No classifier exists at the beginning. What can we use for

early discard at the start of the workflow?

Based on our experience using Eureka, Figure 3 illustrates

the tradeoff that exists between classifier accuracy (higher is

better, but not to scale) and the amount of labeled training

data that is available. Using an iterative workflow, Eureka

helps an expert to efficiently work her way from the extreme

left, where just a handful of labeled images are available, to

the extreme right, where thousands of training images are

used to train a DNN. At the extreme left, the Eureka GUI

allows simple features such as color and texture to be defined

by example patches outlined on the few training examples

that are available. This defines a very weak classifier that

can be used as the basis of early discard. Because of the

weakness of the classifier, there are likely to be many false

positives. Unless the expert restricts her search to just a few

data sources, she will be overwhelmed by the flood of false

positives. Buried amidst the false positives are likely to be

a few true positives. As the expert sees these in the result

stream, she labels and adds them to the training set. Over

a modest amount of time (tens of minutes to a few hours,

depending on the base rate and number of cloudlets), the

training set is likely to grow to a few tens of images. At this

point, there is a sufficient amount of training data to create

a classifier based on more sophisticated features such as

HOG, and learned weights from a simple machine learning

algorithm such as SVM. The resulting classifier is still far

from the desired accuracy, but it is significantly improved.

Since the improved accuracy reduces the number of false

positives, the number of data sources explored in parallel

can be increased by recruiting more cloudlets. Once the

training set size reaches a few hundreds, shallow transfer

learning can be used. This yields an improved classifier that

further reduces false positives, and allows further expansion

in the number of data sources, thus speeding up the search.

Figure 4. Front-end GUI at the User

Once the training set size reaches a few thousands, deep

transfer learning can be used and beyond that, deep learning.

This iterative workflow can be terminated at any point if a

classifier of sufficient accuracy has been obtained.

Throughout this iterative workflow, the most precious

resource is the attention of the human expert. Eureka helps

to optimize the use of this scarce resource in two ways.

First, it enables immediate use of more accurate classifiers

as they are created. Second, as improved classifiers become

available, Eureka allows the search to be easily expanded

to more data sources, thus harnessing more parallelism to

increase the rate at which results are delivered to the expert.

The classifier generated at the end of Eureka’s workflow

may have bias, which is an essential part of expertise. In

real life, we overcome bias through mechanisms such as

obtaining a second opinion on a medical diagnosis. It is

not Eureka’s goal to generate a classifier that beats the

expert — after all, “your model is only as good as your

training data.” Rather, our goal is to help in capturing

expertise in the form of a training set, which is then used

to train a DNN. This DNN will inevitably reflect the bias

of the expert who trained it. In future, we envision multiple

experts each training a different DNN to allow for “second

opinions.” Higher-order machine learning approaches can

integrate DNNs from several experts into a single classifier.

III. SYSTEM DESIGN AND IMPLEMENTATION

Eureka is designed around two major considerations. The

first is software generality, allowing use of computer vision

code written in a wide range of programming languages

and libraries. The second is runtime efficiency, allowing

rapid early discard of large volumes of data. The Eureka

implementation substantially extends the OpenDiamond R©

platform for discard-based search [5], [6], [7], which was

developed in 2003–2010 (prior to the emergence of DNNs).

This platform has been used to implement many applications

in the medical domain, and they provide a rich collection of

domain-specific GUIs that helped us to conceptualize the

Eureka workflow. It also gave us a robust framework for
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Figure 5. Execution Model

early discard that we were able to use as a starting point in

implementing Eureka. Finally, it comes with a rich collection

of simple image processing filters that are valuable in the

early iterations of a workflow (i.e., at the left of Figure 3).

Eureka is controlled and operated from a domain-specific

front-end GUI running on the human operator’s computer.

Figure 4 shows an example of such a GUI. It allows the

user to construct a search query that takes the form of

an early-discard pipeline of cascaded filters. The system

deploys this set of filters across many cloudlets that host the

data collections, and begins searching the associated data in

parallel. Only the results that pass these early-discard filters

are transmitted and displayed to the user. Figure 5 depicts

the logical execution model of Eureka.

A. Data Model and Query Formulation

1) Item: Eureka views data sources as unstructured col-

lections of items. Our current implementation supports im-

ages, individual frames of a video, or overlapping segments

from a video. We focus on images in this paper. The

appropriate granularity of items depends on the task. For

example, an object detection task may use individual frames

as items, while an activity recognition task may use 10-

second segments as items. Items are considered indepen-

dently by Eureka. Item attributes (Section III-A3) facilitate

post-analysis of Eureka results using traditional big data

technologies such as MapReduce or Spark.

2) Filter: A filter is an abstraction for executing any

computer vision code in Eureka. A filter’s main function is

to inspect items, declare which ones are clearly “irrelevant”,

and then discard them. Eureka defines a simple API between

filters and the Eureka runtime. A filter uses these APIs to

get user-supplied parameters (e.g., example texture patches)

for this query. A filter is required to implement a scoring

function, score(item), where it examines a given item

and outputs a numeric score. The runtime applies the filter’s

score function to each item, and if the returned score exceeds

a user-provided threshold, the item is deemed to pass; other-

wise the item is discarded. An early-discard query pipeline

consists of multiple filters, with corresponding parameters

and passing thresholds. The system requires an item to pass

all of the filters (logical conjunction) before transmitting and

presenting it to the user. This effectively implements the

Boolean operator AND across filters. Eureka could easily

be extended to support the full range of Boolean operators

and expressions. Eureka performs short-circuit evaluation:

once an item fails a filter, it is discarded without further

evaluation by later filters in a cascade.

3) Attribute: A filter can also attach attributes to an item

as a by-product of scoring. Attributes are key-value pairs

that can represent arbitrary data, and are accessed using

the get-attribute(item, key) function, and can be

written using the set-attribute(item, key, val)
interface. The primary purpose of the attribute abstraction is

to facilitate communication between filters, where a filter

gets attributes set by another. Attributes are analogous to

columns in relational databases but with significant differ-

ences. In Eureka, attributes are rarely complete for all items

(rows) in the data, both due to early-discard of items in

the pipeline and due to fast-aborted searches. Additionally,

unlike most databases, where the schema tends to be stable,

new attributes may be created rapidly in each new query

as the user applies new filters (e.g., a retrained DNN).

Finally, the user can designate a set of interesting attributes

to be retrieved along with the items. Unwanted attributes

are stripped off before Eureka transmits results back to the

user to reduce bandwidth demand over the WAN. Returned

attributes can be used for analysis using other tools.

4) Examples: Figure 6 shows several example filters.

While some filters output a pass/fail boolean result (e.g.,

JPEG decoder), others output a numeric score (e.g., SVM

confidence) that can be compared with a threshold. As

explained in Section III-B4, the use of numeric scores allows

reuse of cached filter execution results even when filter

thresholds are changed. The SVM filter in Figure 6 illustrates

how attributes enable communication between filters. It uses

the mobilenet_pool1a attribute created by the Mo-

bileNet [8] filter, which in turn uses the rgb attribute created

by the JPEG decoder, forming a chain of dependency. This

attribute mechanism allows decomposition of complex tasks

into independent, manageable, and reusable components,

while still adhering to the filter chain abstraction.

B. Eureka Edge Implementation

Most of the Eureka system runs on cloudlets, colocated

with distributed data sources. The cloudlets both store the
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Filter Synopsis

JPEG decoder

jpeg decode() → bool
Decodes a JPEG image.

Set-attributes: rgb
Returns true if successful, false otherwise.

SIFT matching

sift match(distance ratio: float, example: Image) → int
Finds matched SIFT keypoints between example and test image.

Get-attributes: rgb
Returns number of matched keypoints.

MobileNet classification

mobilenet classify(target class: string, top k: int) → bool
Classifies image into ImageNet classes and test if target class is in top k predictions.

Get-attributes: rgb
Set-attributes: mobilenet pool1a
Returns true if target class is in top k predictions of the test image, false otherwise.

SVM

svm(training data: List〈Image〉) → float
Train an SVM with the given training set, using MobileNet’s 1024-dimensional feature

as SVM input. Then use the SVM to classify the test image.

Get-attributes: mobilenet pool1a
Returns probability of the test image being positive.

Each filter has algorithm-specific parameters, get-/set-attributes and return scores. The user can specify a threshold on each
filter’s return score to drop objects below the threshold.

Figure 6. Examples of Eureka Filters

collected data, and execute queries. As mentioned earlier,

Eureka has been designed with software generality and

runtime efficiency in mind. This section describes how key

components of the Eureka backend address these dual goals.

1) Filter Container: Eureka encapsulates each filter in

its own Docker container. This facilitates use of many

different frameworks with varying software dependencies

concurrently within a single query. For example in Figure 6,

the JPEG decoder may be a proprietary library, while SIFT

is written in OpenCV, MobileNet in TensorFlow, and SVM

in Scikit-learn. Some filters may depend on specific versions

of software (e.g., a specific release of TensorFlow).

The containers representing filters can access multi-core

CPU resources as well as specialized hardware (e.g., GPUs).

For typical uses of GPUs such as DNN inference, we batch

incoming items to exploit the efficient batch processing

capability of popular deep learning frameworks. Eureka

reuses running containers whenever possible, e.g., when the

same filter is used in multiple queries. To simplify filter

development, we have implemented Docker base images for

different Linux distributions. These include all of the logic

needed to interface with Eureka as well as a skeleton filter.

A developer only needs to add code for the computer vision

algorithm that corresponds to the filter being implemented.

2) Itemizer: The itemizer obtains raw data from its data

source, transforms it into an item stream, and injects this

stream into the execution pipeline. The simplest case just in-

volves loading individual files from disk. More generally, the

itemizer can preprocess the data from its native format and

transform it into the items needed for the query. For example,

it can take continuous data (e.g., streaming or stored video),

and emit multiple separate items at a granularity appropriate

for the query (e.g., individual frames for object detection,

or overlapping short video clips for activity recognition).

In addition to selecting granularity, users can also set the

scope of the itemizer. This can limit the search to only a

subset of underlying data based on metadata attributes such

as geographical location and recorded date or time. To take

advantage of temporal locality in the iterative workflow, the

itemizer aggressively caches items that it emits. This item
caching is in addition to the result caching that is described

in Section III-B4. The existence of temporal locality in

Eureka workloads is in contrast to stream analytics, where

each item is processed only once.

3) Item Processor: The item processor is responsible

for much of the query execution in Eureka. It evaluates

the set of early-discard filters on each item independently,

exploiting available data parallelism and multiple cores when

available. It uses filter scores and supplied thresholds to

decide whether an item should be discarded. As mentioned

in Section III-A2, short-circuit evaluation of the filter chain

is used to implement early discard. The item processor

communicates to the filter containers using a narrow API, of

which the three main functions (score, get-attribute
and set-attribute) were described earlier. These at-

tributes are retained in memory for access by downstream

elements of the filter chain. The narrow-waist API and the

use of Docker containers simplify the conversion of off-the-

shelf computer vision code into a Eureka filter. Only the

items passing all filters (usually only a tiny subset of the

entire item stream) are sent to the user. Each transmitted

item includes selected attributes that can be used as the basis
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of front-end operations such as aggregations and joins.

4) Result and Attribute Cache: Eureka workloads typ-

ically exhibit two important properties. First, queries are

aborted long before running to completion. As soon as

a user decides to refine filters or their thresholds, she is

effectively starting a new iteration. Second, as mentioned

in Section III-B2, Eureka workloads exhibit high temporal

locality because of iterative refinement. Since a new filter

chain may overlap with earlier filter chains, the same items

may be re-evaluated by the same filters with the same

parameters. For example, after viewing some results, a user

may retrain an SVM filter with a larger data set. In this

case, only the SVM filter is changed — all the other filters

repeat computations from the previous query. Alternatively,

the user may lower the SVM’s threshold. This may enable

her to discover some previously missed true positives (i.e.,

false negatives in the current iteration).

Eureka’s reuse of cached results preserves strict execution

fidelity as long as a filter is deterministic — i.e., its execution

on the same item with the same parameters always pro-

duces the same result. To preserve execution fidelity, Eureka

immediately detects if the code or parameters of a filter

are changed, thus rendering its cache entries stale. This is

implemented as follows. Filter execution accesses a subset

of attributes (in_attrs). It may update or create a set of

attributes (out_attrs), and typically outputs a score.

Eureka stores two types of cache entries in a Redis database.

In the result cache, it writes:
(item_id, filter_id, filter_params[]) →

(score, {h(a) for a in in_attrs},
{h(b) for b in out_attrs} )

where h(·) is the hash digest of its argument. In the

attribute cache, it writes: h(b) → b for all output at-

tributes in out_attrs. When evaluating a query on an

item, Eureka first identifies all filters in the query and

retrieves all cache entries with the matching item_id,

filter_id and filter_params[]. It then validates

the cache entries by examining their chains of dependency.

A cache entry is deemed valid if and only if all hash digests

of its input attributes match the hash digests of the output

attributes of another validated entry, or a newly-executed

filter. If a valid entry is found, cached results are used;

otherwise, the filter is re-executed. This approach avoids

redundant execution, ensures correctness of cached results,

and minimizes re-computations of hash digests. Compared

to whole-query caching (i.e., hashing all filters together as

a single cache key), Eureka’s finer-grain approach provides

more opportunities to reuse prior results.

Note that result caching is very different from blindly

precomputing and indexing features or metadata ahead of

time. Especially for DNN features, such a priori indexing

can be quite inefficient or even impossible. There is a vast

array of different DNNs that could be used in queries. This

set is constantly growing as new deep learning techniques

emerge. Furthermore, any given network may be trained on

different data, resulting in a very different set of features

extracted. Finally, because of early abort of queries and

early discard, many filters may never be executed on all

data. Hence, aggressive precomputation may be wasteful. In

contrast, the attribute and result caching approach used in

Eureka can be seen as a lazy or just-in-time partial indexing

system [9]. Of course, Eureka can make use of preindexed

attributes if they have already been created.

IV. MATCHING SYSTEM TO USER

The previous sections describe how Eureka is able to exe-

cute queries efficiently at the edge. A key metric is how well

the system can utilize the human expert’s time and attention,

which is the most precious resource in the system. Here, we

present an analysis of the workflow between Eureka and

the expert, with the goal of optimizing delivery of items for

evaluation. The optimal workflow delivers candidate images

at a rate matching the expert’s ability to evaluate them. Too

fast a delivery will waste system resources, and generate a

backlog of wasted work that may never be seen by the user;

too slow a delivery will frustrate the expert with idle waiting

time. Note that although computers usually process much

faster than humans, the expert can still be forced to wait

when the target phenomena are sufficiently rare (i.e., very

low base rate) and the filters are highly selective. Another

constraint is that the delivered images should be reasonable

candidates; that is, images deemed as obvious negatives

should be avoided. This depends, of course, on the set of

early-discard filters currently deployed.

In this section we introduce an analytic model to explore

parameters that will govern the expert’s waiting time. The

model is idealized, as its purpose is to show how the various

parameters interact, rather than to simulate an actual use

case. Figure 7 shows the notation used in the model. Using

this notation, Figure 8 defines several well-known metrics

that pertain to classifier accuracy.

The base rate represents the “rarity” of the search target.

In many valuable use cases of Eureka, the base rate is very

low. This makes it difficult for the classifier, even if highly

accurate, to yield candidates at a fast rate for the expert

to evaluate. Given a single data source, such as a cloudlet

that stores and processes data collected from one or a few

cameras mounted in some physical environment, we can also

compute the pass rate — the average fraction of the W
images in the world that it passes on for expert inspection.

pass rate = BR · TPR+ (1−BR) · FPR

A. Result Delivery Rate

To evaluate the temporal performance of the system, it is

necessary to determine two further parameters: The first is

the average time for the filter set to evaluate a single image

on a cloudlet and decide whether it is a candidate to pass to

the expert. We denote this as tc. The second parameter is the
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TP True positive: items from the population that

are instances of the class, and that are so

designated by the classifier.

FP False positive: items from the population

that are not instances of the class, but are

accepted as instances by the classifier.

TN True negative: items from the population that

are not instances of the class, and that are so

designated by the classifier.

FN False negative: items from the population

that are instances of the class, but that are

rejected as instances by the classifier.

W The size of the entire image population.

Figure 7. Notation

TPR =
TP

TP + FN

FPR =
FP

FP + TN

BR =
TP + FN

W

True positive rate
(aka “recall” or “hit rate”)

False positive rate
(aka “false alarm rate”)

Base rate
(aka “prevalence”)

Figure 8. Metrics Pertaining to Classifier Accuracy

time for the expert to evaluate a candidate image. Although

this is inevitably going to vary with the images and the target

class, human decision times are likely to be on the order of

many seconds or tens of seconds for non-trivial decisions.

We denote this as th.

Given a single data source (cloudlet with stored

camera data), we define the average time to deliver a

new image to the expert as time to next result, or TTNR.

This depends on the above parameters in the following way:

TTNR =
tc

pass rate

As we add more data sources to the system, edge

computing makes high degrees of coarse-grained parallel

processing possible. For N sources,

TTNR(N) =
tc

N · pass rate

B. Optimization Metric

In general, TTNR(N)/th is a measure of how well the

system’s delivery matches the user’s time-scale. We will call

this ratio the User:System match. When the system is per-

forming optimally, the User:System match will approximate

1.0. That is, each new item is delivered when the expert

finishes evaluating its predecessor. A match > 1.0 means

that the user is waiting; a match < 1.0 means that the system

is running ahead, wasting bandwidth and compute resources

on candidates the expert may never look at.

Time is not the only constraint, however. There is also the

need to keep the expert occupied with meaningful decisions

that will ultimately improve the query. It is always easy for

the system to send in more “junk” to avoid letting the user

wait. If the User:System match is high, that is, the filters

are stringent, the user may wait a long time to see the next

candidate. It may be tempting to increase the rate of system

delivery by lowering the thresholds on the filters of the

query. Given a low base-rate environment, this unfortunately

tends to waste the user’s time by presenting obviously bad

candidates (false positives from the system). In essence, a

high false positive rate produces “false positive rage” on the

part of the user! – i.e, extreme annoyance. Ultimately, the

solution is to iteratively improve the query by combining

multiple filters, and incorporating newly found examples to

improve accuracy. Ideally, this will reduce false positives

without increasing false negatives.

C. Analytical Results

The User:System match depends on the true positive rate

TPR, false positive rate FPR, base rate BR of the target

phenomenon, and the number of sources N . It also depends

on the time for the classifier to process an item at one source

tc relative to the time for the human user to evaluate a

delivered item th. In example calculations, we assume that

the time for the system to process a single item from one

source is a factor of 5X faster than the human time to process

a delivered image; other assumptions would scale the results

differently, but the qualitative pattern would be the same.

Because we are dealing with problems where the base

rate is low, the false positive rate governs the system more

than the true positive rate. This effect is shown in Figure 9.

Figure 9(a) illustrates the User:System match ratio when the

classifier is highly accurate: TPR = 0.8, FPR = 0.01.

Under these conditions, the User:System Match is highly

dependent on the base rate and number of sources. Because

target items are scarce, and most of the items that the system

delivers are true positives, it is highly beneficial to deliver

from more sources – more so when the base rate is lower. An

optimal ratio is approached here with 8 sources, regardless

of base rate. Even at the lowest base rate, the user accepts

1 in 13 items presented, and at the highest base rate, half of

the presented items are true positives.

Figure 9(b), in contrast, shows the disastrous effect of a

high false positive rate. As the number of sources increases,

the user is flooded with irrelevant data and the system backs

up, wasting resources. Base rate is irrelevant here because

it is not the sparse targets that are the problem. Rather it

is the overwhelming flood of false positives. At the lowest

base rate, the user rejects 125 items for each one accepted.
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(a) Low False Positive Rate

(b) High False Positive Rate

This graph shows User:System match as the number of
data sources, N , processed in parallel increases. The ideal
match of 1.0 is shown by the dotted line. Base rate (BR)
is a parameter. In (a), the classifier has TPR = 0.8 and
FPR = 0.01; in (b) TPR is unchanged, but FPR = 0.1.

Figure 9. Negative Effect of High False Positive Rate

D. Summary

In this section, we presented an idealized model to show

how the various parameters interact in Eureka, from which

implications can be drawn about critical parameters gov-

erning system performance. We acknowledge limitations of

this calculation. In particular, it is not intended to predict

numerical outcomes in real-world use cases of Eureka,

where the base rate is generally not precisely known; the

delivery is not regular, particularly at the beginning of the

process where few examples are available; and the ratio of

machine to human processing time may be greatly skewed

in favor of the machine. Nonetheless, by characterizing the

User:System match, the model provides an observable metric

that can be used in Eureka to recruit or omit cloudlets and

thus move toward an optimal match.

The analysis further suggests some practical strategies for

iterative Eureka searches. First, in the initial iterations, where

the query’s filter set will have poor accuracy, it does not

make sense to scale out the number of sources, as it will

just overwhelm the user. Second, for phenomena with such

low base rates, it makes sense to focus first on reducing FPR.

Once the FPR is under control, additional data sources can

be added to optimally match the expert.

Dataset YFCC100M ImageNet COCO

# images 99.2 million 1.2 million 330 thousand

# classes unlabeled 1000 80

Figure 10. Comparison of Well-Known Image Datasets.

V. EXPERIMENTAL METHODOLOGY

As described in Section II, the iterative workflow of

Eureka enables users to efficiently discover training data

from distributed data sources by incrementally improving

the classifier accuracy. We apply this iterative workflow to

collect training data for several selected targets and try to

answer the question: Is Eureka effective in reducing the time
taken to create a training set?

We consider two main evaluation criteria:

• the total elapsed time taken to discover a training set

of a certain size;

• productivity: number of training examples discovered

per unit time, over all of the iterations of Eureka.

We compare Eureka against two alternatives: BRUTE

FORCE and SINGLE-STAGE EARLY-DISCARD. With BRUTE

FORCE, the user manually inspects and labels every image.

For targets with a low base rate this requires the user to plow

through many images before collecting even a small training

set. SINGLE-STAGE EARLY-DISCARD improves the situation for

the user by allowing them to use a simple filter chain to

perform early-discard [5]. These filters are based on the

initial set of sample images of the target, and are essentially

identical to the queries used in the first iteration of the

Eureka experiments. However, there is no use of machine

learning or of iterative refinement.

Our experiments use 99.2 million images from the Ya-

hoo Flickr Creative Commons 100 Million (YFCC100M)

dataset [10]. This is by far the largest publicly available

multimedia dataset. The images in it are representative of

real-world complex scenes as opposed to datasets such as

ImageNet [11] and COCO [12], both of which are curated

and have a relatively few, evenly-distributed classes. Fig-

ure 10 compares these datasets. As Section VI shows, the

number of images that need to be processed in order to

discover just 100 true positives easily exceeds the sizes of

the ImageNet and COCO datasets.

We run experiments on 8 cloudlets. Each cloudlet has a 6-

core/12-thread 3.6GHz Intel R© Xeon R© E5-1650 v4 processor,

32GB DRAM, a 4 TB SSD for image storage, and an

NVIDIA GTX 1060 GPU (6GB RAM). The 99.2 million im-

ages in YFCC100M are evenly divided among the cloudlets.

Each cloudlet accesses its own subset of the data from its

SSD, thus ensuring high bandwidth and low latency. The

user’s GUI connects to the cloudlets over the Internet.

VI. EXPERIMENTAL RESULTS

We present results for three experimental case studies. In

each, we attempt to build a labeled training dataset for a

novel target. The three targets chosen are (in descending
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(a) Deer

(b) Taj Mahal

(c) Fire hydrant

Left column: examples used in the initial Eureka iteration.
Right column: examples discovered using Eureka, and used
as training data in following iterations.

Figure 11. Examples of Targets Used in Our Case Studies

order of base rate): (1) deer, (2) Taj Mahal, and (3) fire

hydrant. Figure 11 gives examples of each target. There

are no publicly available labeled datasets or off-the-shelf

detectors for these targets. Although no specialized expertise

is needed to identify these targets, they are fairly rare in

Flickr photos and still serve as an initial proof of the Eureka

concept. We defer formal user studies in domains such as

healthcare or national security to future work.

For each target we started with an initial set of 5 example

images. These were used to bootstrap an initial set of

filters for the first Eureka iteration. Over five iterations

with increasingly sophisticated and better trained filters, we

collected a total of approximately 100 new images of the

target. The GUI assists users with no programming skills or

computer vision background to easily create filters by using

example patches from the training images collected so far.

For the first two iterations we used explicit features such as

color, texture, or shape to perform early-discard of irrelevant

data. Once we collected more than 10 positive examples,

we used a MobileNet + SVM filter, in which an SVM is

trained over the 1024-dimensional feature vectors obtained

using MobileNet. The GUI allows the user to easily add and

remove examples to just-in-time train the SVM. We incre-

mentally improve classifier accuracy by retraining the SVM

when the collected example set is approximately doubled.

In general, the optimal point to switch filter types or retrain

Target Estimated Images Positive

base inspected examples

rate by user discovered

Deer 0.07 % 7,447 111

Taj Mahal 0.02 % 4,791 105

Fire hydrant 0.005% 15,379 74

Figure 12. Summary Results for Case Studies

This graph shows the estimated amount of human attention
needed (Y-axis, log scale) using three different approaches
to acquire a training set of fixed size (111 images of deer,
105 images of Taj Mahal, and 74 images of Fire hydrant).

Figure 13. Number of Images Presented to User

a machine learning model depends on the characteristics of

data, target, and filters, and can be highly empirical. Our

rule-of-thumb is to escalate to advanced filters when adding

more training examples to the current machine learning

algorithm fails to improve the quality of the results.

To allow unbiased evaluation of filters, we used a disjoint

subset of the source data in every iteration so that the data

being processed was never seen before by the filter. Hence,

these experiments did not take advantage of result caching.

Figure 12 summarizes the overall results of using Eureka

to build a training set of approximately 100 examples for the

three targets. Although the specific numbers are primarily

determined by dataset characteristics and filter quality, they

give an intuition about the targets’ rarity and the human

effort spent. We estimate the base rates in YFCC100M based

on the metadata of Flickr tags, titles, and descriptions. This

metadata is only used in analysis of the results and not used

in the search process. Although this measure is subject to

inclusion error (tag without actual target) and exclusion error

(target without tag), it provides at least a crude estimate of

the prevalence of the targets in the dataset.

Figure 13 (Y-axis in log scale) compares Eureka to

alternatives in the number of images the user has to inspect

when building a training set of given size. For brute force,

this number is extrapolated using the estimated base rate.

For single-stage early-discard, this is based on the precision

of the filters used in the first Eureka iteration. We see

that single-stage early-discard reduces demand for human

attention by an order of magnitude over brute force. Eureka

reduces demand by a further order of magnitude.
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Filters Examples Items Items New Pass Precision Elapsed Product-

Pos Neg processed shown hits rate time ivity

Initial set of images 5

1 RGBhist x2 + DoG texture 5 0 991,814 1,836 5 0.19% 0.27% 12.53 0.40

2 RGBhist x2 + DoG texture 10 0 652,357 2,002 5 0.31% 0.25% 13.98 0.36

3 MobileNet + SVM 15 15 90,047 1,704 17 1.89% 1.00% 11.40 1.49

4 MobileNet + SVM 32 32 130,266 1,204 35 0.92% 2.91% 8.25 4.24

5 MobileNet + SVM 67 67 247,039 701 49 0.28% 6.99% 10.27 4.77

Number of initial examples = 5 Pass rate = Items shown / Items processed
Items processed = Images processed by machine on edge nodes Precision = New hits / Items shown
Items shown = Images passing all filters, transmitted and shown to user Elapsed time = Wall clock time of that iteration (minutes)
New hits = Images labeled as true positives by user in that iteration Productivity = New hits / Elapsed time (# per minute)

Figure 14. Case Study: Building a Training Set for a Deer DNN

Filters Examples Items Items New Pass Precision Elapsed Product-

Pos Neg processed shown hits rate Time ivity

Initial set of images 5

1 RGBhist + SIFT + Person 5 0 850,352 3,741 4 0.44% 0.11% 30.17 0.13

2 HOG x2 9 0 245,315 352 5 0.14% 1.42% 9.88 0.51

3 MobileNet + SVM 14 14 228,266 343 13 0.15% 3.79% 8.07 1.61

4 MobileNet + SVM 27 27 590,187 172 37 0.03% 21.51% 20.50 1.80

5 MobileNet + SVM 64 64 633,560 183 46 0.03% 25.14% 15.63 2.94

Columns have the same meaning detailed in Figure 14.

Figure 15. Case Study: Building a Training Set for a Taj Mahal DNN

A. Case Study: Deer

Figure 14 shows the results for the deer training set. For

the first iteration we used an RGB histogram filter and a

DoG (Difference of Gaussian) texture filter, which use color

and texture features respectively to pass the images. Patches

of deer fur from the bootstrapping images were given to

the DoG texture filter. Patches defining the color of the

deer fur and verdure of the scene constituted the two RGB

histogram filters. Note that although we use filter names

such as RGB, DoG, and SIFT in our current implementation,

we expect that a production version of Eureka would use

more accessible descriptions such color, texture, and shape.

Although the user does not need to know the underlying

computer vision algorithms of these filters, she would need

to know that a specific filter is indicative of the target class.

This is, of course, an essential part of domain expertise.

Iterations lasted 8–14 minutes, with the variability reflect-

ing image processing time on cloudlets, filter accuracy, and

human inspection time. Since deer constitute a deformable

and varying class of objects, the RGB histogram and DoG

texture filters showed no improvement over two succes-

sive iterations. The MobileNet + SVM filter introduced in

iteration 3, in contrast, showed substantial improvements

across iterations in terms of precision. Most importantly, it

also resulted in greater productivity (last column). In five

iterations, the productivity increased from 0.40 new positives

per minute to 4.77, an improvement of more than 10X.

B. Case Study: Taj Mahal

Figure 15 details the steps in obtaining a dataset of 105

positive examples of the Taj Mahal. Since the Taj Mahal is

a rigid structure with distinctive features, we used a SIFT

(Scale Invariant Feature Transform) filter. The knowledge of

the target helped us to include other filters such as an RGB

histogram filter (for the white marble) and a human body

filter. The choice of the body filter is based on the intuition

that the Taj Mahal is a popular tourist destination and is

likely to have people in most target images.

On the second iteration, two HOG filters (Histogram of

Oriented Gradients) were created based on the 9 available

examples, to capture the shape of (1) minarets, and (2)

small domes. From the third iteration onwards we used

a MobileNet + SVM filter which was improved in each

iteration by adding the new positive examples obtained by

the prior iteration. The returned false positives were mostly

buildings such as Humayun’s tomb and Sikandara which

closely resemble Taj Mahal’s dome and entrance. As can be

seen, there is an improvement of user productivity in each

iteration. In the final iteration, over a quarter of the items

presented to the user are true positives.

C. Case Study: Fire Hydrant

The base rate of fire hydrant is much lower than the first

two targets chosen. In Figure 16, we present measurements

from building a training set of 74 fire hydrant images.

A HOG filter was used initially to capture the shape of
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Filters Examples Items Items New Pass Precision Elapsed Product-

Pos Neg processed shown hits rate Time ivity

Initial set of images 5

1 HOG x2 5 0 524,136 6,643 6 1.27% 0.09% 13.00 0.46

2 HOG x3 11 0 523,008 3,133 5 0.60% 0.16% 15.15 0.33

3 MobileNet + SVM 16 16 210,688 1,775 9 0.84% 0.51% 7.68 1.17

4 MobileNet + SVM 25 25 517,789 2,856 24 0.55% 0.84% 17.52 1.37

5 MobileNet + SVM 49 49 973,828 972 30 0.10% 3.09% 23.18 1.29

Columns have the same meaning detailed in Figure 14.

Figure 16. Case Study: Building a Training Set for a Fire Hydrant DNN

(a) Image Processing Rate

(b) Fraction of Time Spent on Data Access

Figure 17. Effect of Bandwidth between Cloudlet and Data Source

the hydrants. From the third iteration onwards, using a

MobileNet + SVM filter helped to improve precision. Many

of the remaining false positives returned by Eureka include

British royal mail boxes and traffic cones that resemble

fire hydrants. In the later iterations, the classifier accuracy

improves significantly but user productivity stalls. This is

due to the low inherent base rate and the fact that we have

only 8 data sources, resulting in wait time for the user. In

this situation, as discussed in Section IV, Eureka should add

additional data sources to speed up discovery.

D. The Necessity of Edge Computing

Edge computing is a key enabler of Eureka as it allows

the user to scale out to many data sources without stressing

the WAN. The proximity of cloudlets to data sources is cru-

cial for efficiency — typically providing LAN connectivity

(1 Gbps or higher) to an archival data source.

To study the importance of proximity, we throttled the

network bandwidth between cloudlets and their data sources

using the Linux command line tool tc qdisc. We ran

experiments at 1 Gbps, 100 Mbps, 25 Mbps and 10 Mbps.

The US national average broadband value of 18.7 Mbps in

2017 [13] lies towards the lower end of this range.

We selected three filters (ordered by increasing cost in

terms of computation time): RGB histogram, MobileNet

inference, and SIFT matching. Figure 17(a) reports the

processing throughput on the cloudlets (processed images

per second, higher is better) as we decrease the bandwidth

from 1 Gbps to 10 Mbps. At 1 Gbps, the RGB histogram fil-

ter achieves significantly higher throughput than MobileNet

and SIFT because it is the least computationally expen-

sive. As the bandwidth decreases, its throughput decreases

drastically. SIFT, the most expensive filter, is still bound

by computation at 100 Mbps, but also suffers from low

bandwidth starting at 25 Mbps. Under 25 Mbps, there is

only marginal difference in throughput among the three

filters, implying data access has become the bottleneck for

all of the filters. This can be confirmed in Figure 17(b),

where we measure the percentage of total run time spent

on retrieving data as opposed to computation (lower is

better). At the lowest bandwidth of 10 Mbps, even the most

computationally expensive SIFT filter spends 80% of its run

time retrieving data, and the RGB filter spends 98%! This

confirms the fundamental premise that edge computing is

essential for the success of Eureka.

VII. RELATED WORK

While machine learning has long been used in computer

vision, the use of DNNs only dates back to the 2012

victory of Krizhevsky, Hinton, and Sutskever in that year’s

ImageNet competition [14]. Since then, DNNs have become

the gold standard for accuracy in image classification. As

discussed earlier, DNNs enable direct creation of classifiers

by domain experts once the training framework has been

set up. No coding is required of them. Their primary task

becomes creation of a large, accurately-labeled training set.

Since accurate labeling follows implicitly from expertise,

finding an adequate number of training examples becomes

the dominant challenge. For DNNs to deliver good results,

the training set sizes have to be very large: typically on
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the order of 103 to 104 items. It is very time consuming

and laborious to manually discover so many true positive

items for a phenomenon whose intrinsic base rate is low.

This effort cannot be outsourced to non-experts or crowd-

sourced. It requires the painstaking effort of domain experts.

To the best of our knowledge, no previous work has

studied the above problem specifically in the context of

experts. Previous efforts to construct large training sets have

typically used crowd-sourcing to achieve high degrees of

human parallelism in the discovery process. The work of

Vijayanarasimhan et al. [1] and Sigurdsson et al. [2] are two

recent examples of this genre. Unfortunately, by definition,

expertise in any domain is rare. That is the whole point of

using the term “expert” to refer to such a person. Large

investments of time in education, training, and experience,

possibly amplified by rare genetically-inherited talents, are

needed to produce expertise. Experts are not cheap, and

crowd-sourcing them is not viable. Further, as discussed in

Section I, even if crowd-sourcing experts were viable, there

may be stringent controls on the accessibility of data sources.

In the extreme case, only one expert may have access.

In spite of sustained efforts in unsupervised and semi-

supervised learning [15], [16], [17], [18], supervised learning

still provides the best accuracy for domain-specific computer

vision tasks. As long as an expert needs to manually create a

large and accurately-labeled training set from huge volumes

of unlabeled data, Eureka will be valuable.

Eureka substitutes machine parallelism (growing number

of cloudlets in the later stages of the workflow) for human

parallelism. Rather than trying to harness many experts to

work on the same task in parallel, Eureka tries to improve

the efficiency of a single expert in discovering training data.

We are not aware of any other work that has studied this

specific problem. This is an inherently human-in-the-loop

problem. Hence, the vast body of “big data” solutions to date

(including well-known tools such as Hadoop) have little to

offer in this context. Virtually all of those solutions use a

batch approach to processing, and depend on optimizations

such as deep pipelining that have little value in a context

where a user may abort processing at any moment [7].

The approach of using early discard for human-in-the-loop

searches of unindexed image data was introduced in 2004

by Huston et al. [5] in a system called Diamond [6], [7].

This was, of course, long before the emergence of DNNs

and the resulting problem of creating large training sets.

Eureka applies the Diamond concepts of early discard, filter

cascades, and iterative query refinement to machine learning.

As mentioned in Section III-B, the Eureka implementation

leverages and extends the OpenDiamond R© platform.

The term “early” in “early discard” refers to the process-

ing pipeline from data storage (disk or SSD) through various

stages of server hardware, operating system, and application

layers, to transmission across the Internet, further processing

at the client operating system and application layers, and

eventual processing by the human expert. The ability to

discard irrelevant data as early as possible in this pipeline

improves the efficiency of the system. As discussed earlier

in this paper (Section VI-D), edge computing helps in the

Internet context by avoiding WAN transfer of items that can

be deemed irrelevant by cloudlet processing.

In the current Eureka implementation, filters that perform

early discard execute as Docker containers on cloudlets.

Further efficiency in early discard could be achieved by

executing filters even closer to data storage. This could

leverage the large body of work that has been done in

the context of active disks and active flash, also referred

to as intelligent storage [19], [20], [21], [22], [23], [24],

[25], [26], [27]. Closely related are approaches such as

Abacus [28], Coign [29], River [30] and Eddies [31] that

dynamically relocate execution relative to data based on

current processing attributes. Also related is the large body

of work on operator ordering for query optimization in rela-

tional database systems. This has been a staple of database

research over almost its entire history, starting from System

R [32] down to today [33], [34], [35], [36], [37].

There has been recent work on the use of teacher models
for early discard in computer vision [38], [39]. This ap-

proach assumes that an accurate, domain-specific teacher

model exists to label data. In the absence of such a pre-

trained teacher model, there is no alternative to using a real

human expert. This is Eureka’s sweet spot.

VIII. CONCLUSION AND FUTURE WORK

DNNs have greatly increased the accuracy of computer

vision on image classification tasks, as shown by the near-

human accuracy of recent face recognition software such

as DeepFace [40], FaceNet [41] and OpenFace [42]. This

success comes at a high price: namely, the need to assemble

a very large labeled dataset for DNN training. How to

efficiently use an expert’s precious time and attention in

creating such a training set is an unsolved problem today.

Eureka leverages edge computing to solve this problem.

The essence of the Eureka approach is an iterative workflow

in which the training examples that have been discovered so

far can be immediately used to improve the accuracy of early

discard filters, and thus improve the speed and efficiency

of further discovery. Our experiments show that Eureka can

reduce by up to two orders of magnitude the amount of data

that a human must inspect to produce a training set of given

size. Our analysis reveals the complex relationship between

filter accuracy and parallel search of multiple data sources.

Many future directions are suggested by this work. A

natural next step would be to extend the Eureka implemen-

tation beyond simple images and video to a wider range

of data types, such as whole-slide images in pathology [3],

map data, and multi-spectral images. Although this paper

focused on independent Internet-based data sources, the

Eureka concept has relevance to many other settings, as
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discussed in Section I. Today, many large archival datasets

are stored in a single cloud data center. Extending Eureka

to support this setting would be valuable. The concepts of

“edge” and “cloudlet” will need to be re-interpreted, and

the implementation will need to be extended to reflect this

new setting. From the viewpont of validation, it would be

valuable to explore how domain experts use Eureka and

whether they benefit from it. This work would include

creation of GUIs that bridge the semantic gap between

domain-specific concepts and raw data. Another area of

future work would be to enhance Eureka’s early discard

efficiency by using processing embedded in storage when

it is available. As discussed in Section VII, modern imple-

mentations of concepts such as active disk and active flash

have emerged recently and these would be good performance

accelerators for early discard. Eureka could also be extended

to support commercial products such as IBM’s Neteeza

appliances [43], which provide specialized edge computing

for storage. Finally, our discussion of Eureka so far has

focused on its use by a single expert at a time. For reasons

discussed in Sections I and II, it is rare that multiple experts

are simultaneously available to work on the task of creating

a training set for a DNN. However, if one has the good

fortune to benefit from multiple experts, it would be valuable

to extend the architecture shown in Figure 1 to a multi-user

setting. The changes to the Eureka front-end are likely to be

deep and extensive if the goal is to allow these experts to ac-

tively collaborate in a joint task. The ability to share newly-

discovered training examples and newly-created filters, and

thereby accelerate the process of discovery would effectively

create a new form of computer-supported cooperative work

(CSCW). It also offers the possibility of developing new

multi-expert techniques to overcome the problem of single-

expert bias that was discussed in Section II.

In closing, Eureka is based on the premise that at least

some aspects of domain-specific human expertise can be

captured in DNNs. Its goal is to help experts efficiently

capture their own expertise in the form of a large training set.

This difficult and human-intensive task is likely to remain

important well into the future, as long as supervised learning

remains central to the creation of DNNs.
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