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Abstract—Situational awareness involves the timely acquisition of
knowledge about real-world events, distillation of those events into
higher-level conceptual constructs, and their synthesis into a coherent
context-sensitive view. We explore how convergent trends in video
sensing, crowd sourcing and edge computing can be harnessed to
create a shared real-time information system for situational awareness
in vehicular systems that span driverless and drivered vehicles.

I. FOCUSED ATTENTION IN A HECTIC WORLD

Situational awareness is defined as “up-to-the-minute cog-

nizance or awareness required to move about, operate equip-

ment, or maintain a system” [1]. Events in the world around

us can be perceived and comprehended in many different

ways, and from many different viewpoints. Some of these

events may be directly relevant to one’s current mission; other

events may be irrelevant. We use the term “mission” here

broadly, as “a specific task with which a person or a group

is charged” [2]. To someone driving home from work in a

snowstorm, knowledge of which roads have recently been

plowed is extremely valuable. During the same snowstorm,

knowledge of road conditions is irrelevant to someone who

is taking the metro home. However, if the metro rider uses

a wheelchair, it would help to know in advance that the

elevator at his regular metro stop is not operational. This paper

focuses on the creation and maintenance of a system-wide real-

time knowledge base from which many context-sensitive and

mission-specific worldviews can be extracted.

Situational awareness involves the timely acquisition of

knowledge about real-world events, distillation of those events

into higher-level conceptual constructs, and their synthesis into

a coherent holistic view that is specific to one’s mission. In

this paper, we focus on situational awareness as it applies to

the residents and administrators of metropolitan areas. These

are areas that may range in size from small compact cities

to sprawling county-sized entities. The convergence of three

techonology trends offers the potential to greatly enhance

situational awareness in such areas.

The first trend is the growing deployment and acceptance of

always-on video cameras in public spaces. A 2013 survey in

the U.K. estimated one surveillance camera in a public space

for every 11 people [3]. By 2012, virtually every automobile

in Russia had a video camera on its dashboard to record

incidents for insurance purposes [4], [5]. Extrapolating from

these trends, the report of the 2013 NSF Workshop on Future
Directions in Wireless Networking [6] predicts that “It will

soon be possible to find a camera on every human body, in

every room, on every street, and in every vehicle.”

The second trend is the growing social acceptance of
crowd sourcing for acquiring real-world information. Yelp,

TripAdvisor and Waze are three examples of widely accepted

forums for crowd-sourced information on restaurants, travel

services, and traffic conditions respectively. While work con-

tinues on optimizing incentive structures for attracting high-

quality crowd-sourced information, it is clear that sucessful

business models can be built on crowd sourcing.

The third trend is real-time video analytics using edge
computing [7]–[9]. There is growing recognition that live video

offers several advantages relative to other sensing modalities.

Most important is its flexibility and open-endedness: new

image and video processing algorithms can be developed to

enhance the information extracted from an already-deployed

video camera. Additionally, video offers high resolution, wide

coverage, and low cost relative to embedded sensors. A critical

requirement for scalability is that analytics be performed

close to the point of capture. Shipping video to the cloud

from myriad cameras places excessive bandwidth stress on

the ingress networks of a metropolitan area. The solution is

to perform the video analytics on dispersed elements called

cloudlets [10] that have wired or wireless LAN connectivity

to associated cameras. We assume that each cloudlet has

sufficient compute power and hardware accelerators to perform

real-time video analytics on all its associated cameras. It also

possesses ample storage to preserve video at full fidelity for a

significant retention period before being overwritten.

We explore how these convergent trends can be harnessed

to create a shared real-time information system upon which

mission-specific software can be built to provide enhanced

situational awareness. Since situational awareness is primarily

about support for human decision making, “real-time” is on

the order of seconds to tens of seconds. In the extreme case of

immersive decision-making based on virtual or augmented re-

ality, end-to-end latencies as low as a few tens of milliseconds

may be involved. We focus on vehicular use cases because

they are likely to offer the highest payoff in the shortest time

for the ideas expressed here. However, these concepts have

much broader relevance. With modifications, they also apply

to pedestrians, bicyclists and others who are in wireless contact

with cloudlets. They can also be used in the context of drones,

delivery robots, and other autonomous vehicles.

II. HISTORICAL ROOTS

The inspiration for our system architecture comes from

work that is over 75 years old. During the Battle of Britain

in 1940, the superior situational awareness of the Royal
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Fig. 1. RAF Uxbridge Control Room During the Battle of Britain (1940)
(Source: Imperial War Museums, UK)

Air Force (RAF) proved crucial to victory. The ability to

allocate just the right quantity of very scarce resources (pilots

and aircraft) just in time to precisely the right places was

priceless. In far less dire circumstances, the administrators

of every city, county, or other metropolitian area face the

challenge of optimally directing scarce resources (salt trucks,

fire trucks, police officers, etc.). The circumstances are even

more challenging during recovery after a major disaster (e.g.,

earthquake, flood, terrorist attack, etc.)

The RAF’s situational awareness system was based on a

new type of sensor, radar, that had just been invented. While

primitive by today’s standards, the radar of 1940 was capable

enough to make the crucial difference to survival. However,

by itself, a single radar station could only offer a tiny sliver

of knowledge about the pattern of action evolving in real

time. This high-level information (e.g. number of aircraft,

heading, altitude) had to be combined with similar inputs

from many other radar stations to form a composite picture

of the unfolding threat. This was further combined with static

map information as well dynamic information pertaining to

the state of readiness and engagement of RAF resources.

The resulting synthesis provided decision makers with the

situational awareness necessary for command and control.

Figure 1 illustrates how static map information was com-

bined with dynamic annotations obtained through real-time

input streams from edge analytics. In the technology of 1940,

“edge analytics” consisted of human operators interpreting

radar signals at a multitude of stations. Notice that the analysis

of sensor inputs (i.e., radar signals) happened at the edges.

Only the distilled, and hence much lower bandwidth, infor-

mation from the edge analytics were transmitted (via human

telephony) to the control room shown in Figure 1. Human

operators performed updates to the crucial map-based data

structure shown in Figure 1, which represented the synthesis

and visualization of current mission-specific knowledge. A

subset of this data structure, scoped to the appropriate coverage

zone, was also available to lower echelons of command. This

accurate and highly agile shared information system enabled

optimal decision making at every level of command.
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Fig. 2. System Architecture for Situational Awareness

Fast forward to 2017. Figure 2 illustrates a system architec-

ture inspired by Figure 1. The entire room and people shown

in Figure 1 are replaced by a smartphone screen (for a mobile

user) or a wall-sized screen (for an administrator in an office).

The software driving each screen is mission-specific. It obtains

its real-time inputs from a common shared information system,

but analyzes, filters and customizes its output to be mission-

specific. The real-time inputs to the shared information system

are provided by video analytics running on cloudlets and

performing real-time processing of input streams from video

cameras on vehicles, people, buildings, and so on.

The architecture shown in Figure 2 is extensible because

mission-specific video analytics code can be dynamically

inserted into cloudlets. For example, if a parent wishes to

follow her child as he makes his way about a city, code to

recognize that child’s face can be dynamically installed on

relevant cloudlets. As the child comes into view of different

cameras, and is recognized, the cloudlet transmits details of

the sighting (possibly with a short video clip) to the shared

repository. Access controls on this data can restrict it to the

parents and a small set of trusted friends and relatives. This

architecture could also be generalized to support a wide range

of multi-modal inputs, of which video is just one modality.

III. MAPS: CURATED SPATIAL KNOWLEDGE

For a mobile user, a substantial part of situational awareness

is captured in spatial knowledge that is relatively static. For

example, knowing that the road narrows sharply after the next

bend and that there is a steep uphill climb beyond that, is

valuable to someone who is approaching that bend in a car or

bicycle. This information only changes rarely (e.g., the road is

widened), typically over timescales of months or years. Other

components of spatial information are much more dynamic.

For example, the presence of dense fog around the next bend

is valuable information, but its lifetime is likely to be measured

in minutes or hours. Fallen rocks or tree branches, temporary

lane closures, traffic congestion, icy road conditions, and many

other phenomena relevant to situational awareness have short

lifetimes, on the order of a few minutes to a few hours.



It is standard practice to separate the large static component

of spatial information into the well-known form of encoding

known as a map. This process of separation necessarily

involves considerable abstraction, and is best viewed as an

act of curation by the map-maker. For example, two high-

resolution satellite images of the same area taken just a few

minutes apart may differ significantly at the pixel level due to

the motion of individuals and vehicles, or due to the change

in angle of reflection of sunlight from surfaces. Yet, a map of

the same area does not change at that timescale. The curation

of maps from raw pixel data can be significantly automated,

but still involves human mediation at least in the final stages

for sanity checks and certification. From the viewpoint of

distributed systems technology, a map may be viewed as

cloud-sourced read-mostly data that is rarely updated. Standard

eventual-consistency techniques can be used for caching and

prefetching, with little runtime cost or implementation com-

plexity required for maintaining consistency.

The dynamic component of spatial knowledge is typically

structured as an overlay on top of a map. Overlays can be

compact, because they annotate the much larger volume of

static information in the underlying map. For example, to

show that a segment of a road is congested, one only needs

to convey the road ID, the road coordinates between which

the congestion information applies, and an indication of the

degree of congestion. This could be encoded in 100 bytes or

less. None of the complexity of the twists and turns of the road

over its length, its changing gradient, details such as number

of lanes, or topology of the surrounding areas need to be

conveyed in the overlay. That voluminous information, whose

encoding may be many megabytes in size, remains unchanged.

Maps can be combined with mission-specific overlays to

provide situational awareness in a way that is highly cus-

tomized, yet efficient in storage, transmission and processing.

In the rest of our discussion, we therefore use maps and over-

lays as the organizing data structures for situational awareness.

IV. DRIVERLESS AND DRIVERED VEHICLES

A. Proactive versus Reactive Actions

Research on driverless vehicles is nearing commercializa-

tion by companies such as Google and Uber. An important

lesson that has been learned is that extremely accurate maps of

high resolution are crucial to the success of driverless vehicles.

Real-time sensing (for example, based on computer vision

or radar) complements map-based knowledge. The sensing is

essential to providing important details (such as new obstacles

on the road) that are missing from the map. However, a

map that has already been updated to reflect those obstacles

would be even better. It would enable proactive actions, rather

than reactive just-in-time actions. For example, moving to a

different lane well in advance of an obstacle is safer than

last-minute detection and avoidance. In other words, superior

situational awareness can produce improved responses to real-

world events and thus lead to better outcomes. Knowing that

there is poor visibility around the next curve of a windy

mountain road, or that deer have recently been seen crossing

the road can prepare you better for those hazards.

Today, driverless vehicles treat knowledge from sensing

as a completely separate channel of knowledge from map

information. There is an opportunity to close the loop: i.e.,

to automatically update the shared information repository in

Figure 2 as a side effect of real-time sensing for reactive

control. By doing this in a crowd-sourced manner, every

driverless vehicle becomes both a real-time producer and a

real-time consumer of information in that repository.

B. Human Inputs Plus Edge Analytics

Human-in-the-loop crowd-sourced systems such as Waze

already exist. Our proposed approach would reduce the cog-

nitive load on humans in such a system. They would still

be welcome to offer manual inputs, but we expect that most

updates would be generated automatically through edge ana-

lytics. Each vehicle would emit a symbolic content stream that

compactly encodes sensed information. In some cases, images

or short video snips may annotate the symbolic encoding.

Once a new sensed observation is incorporated into a map and

distributed to vehicles, it can be omitted from further reporting

by vehicles. This can be viewed as a form of deduplication

that reduces the volume of total transmitted data. Periodic

reconfirmation of short-lived observations may be needed: e.g.,

“Is the dead animal still in the left lane?” may result in the

response “No, the left lane is now clear.” There may also

be value in getting human confirmation of automatic updates,

especially to resolve conflicting updates from multiple sources.

This can be implemented as a hands-free, speech-based system

in which a driver is asked to verbally confirm an observation

that should be currently visible to him.

C. Human Interactions

Improved situational awareness is clearly valuable to human

drivers in conventional drivered vehicles. However, there are

many open questions regarding how best to present the infor-

mation to the driver. Should new information be presented

through a synthesized voice, much like a GPS navigation

system today? Should it just be a visual annotation on a

display built into the vehicle or separately carried by the user?

Should it use the new visualization capabilities made possible

by “smart windshields” that allow augmentation of the scene

in front of the vehicle [11]? Should a user wear a smart helmet

or head-up display to benefit [12]? With human drivers, these

HCI questions about how to present the information, become

as important as the deeper challenge of what information to

present. The latter component is common to both driverless

and drivered vehicles.

Note that these HCI challenges do not affect the ability

of a drivered vehicle to contribute data. If a drivered vehicle

is equipped with sensors (e.g. video cameras, accelerometers,

GPS location sensing, etc.) and the computational capability

to perform edge analytics (i.e., an on-board cloudlet), it can

contribute to map updates without involvement of the human

driver. The incentive structure to encourage such involvement



needs to be worked out, but there are no technical impediments

beyond those faced by driverless vehicles.

D. Beyond Automobiles

These concepts generalize to use cases beyond terrestrial

vehicles. For example, it applies equally well to the aerial

context where drones co-exist with piloted aircraft. On-board

edge analytics of sensor data can provide map updates from

both types of sources; both can benefit from the improved sit-

uational awareness obtained through real-time map updates. In

some use cases, such as a small drone, the mobile entity may

be too small to host a cloudlet powerful enough to completely

perform all necessary real-time processing. This will require

development of strategies that partition the processing between

the mobile entity and a static cloudlet. There will be difficult

bandwidth and scalability challenges that result from such par-

titioning. Intelligent onboard preprocessing and data sampling

will be necessary requirements to address these challenges.

Our vision, as expressed in Figure 2, is a single software

architecture with rich interfaces that provide ample scope for

context-specific customization through parameterization and

plug-in software modules for customized edge analytics. The

deployment of such an architecture could greatly improve

situational awareness in a wide range of use cases.

V. SYSTEM ARCHITECTURE

A. Scaling, Coverage and Resolution

One of the first questions to be answered is how large a cov-

erage zone is desired. It is within this coverage zone that real-

time inputs are collected, interpreted, fused, and distributed.

The granularity and resolution of detail has to be fine enough

to influence the actions of driverless vehicles. End-to-end

network latency and scalability are important considerations in

sizing coverage zones. It is hard to see how to create a single

coverage zone that spans the entire continental United States.

What appears more feasible is a federation of many coverage

zones that are each much smaller. Across that federation,

the timeliness and granularity of knowledge propagation may

be significantly poorer than within a single coverage zone.

Observers outside a coverage zone can “zoom in” at fine

granularity to details within it, but there will be inevitable lag

in seeing updates. Our intuition, which needs to be validated

in real implementations, is that a county-sized coverage area

is likely to be what we can handle today. This is roughly 500

square miles, using the smaller average county sizes of the

eastern US. It is a substantial coverage area for situational

awareness at the fine granularity of small potholes, small

rocks, icy spots on roads, stalled vehicles, dead animals, etc.

As vehicles move, they will eventually cross from one zone to

another. That transition will trigger a handoff. There are many

open questions surrounding the design and implementation of

such a cross-zone handoff mechanism.

Independent of latency and scalability considerations, there

are sound non-technical reasons why a global situational

awareness architecture is always likely to remain a federation

of quasi-independent zones. In particular, there are compelling

national security reasons to disallow very fine grain real-time

knowledge at street level to be visible outside a country. Only

coarser-grain or stale knowledge may be allowed. These rea-

sons are even more compelling in military use cases — control

and restriction of knowledge from within a zone to entities

outside the zone is an obvious requirement for operational

security. Even within a zone, there may be restrictions. For

example, all vehicles may be allowed to report observations,

but only low-fidelity information may be released to vehicles

whose occupants lack appropriate security privileges. In other

words, situational awareness may be degraded for security rea-

sons. Using a unit of local government such as a county for a

situational awareness zone is an approach that aligns naturally

with boundaries of administrative trust and responsibility.

B. Aggregation and Access Control

For each coverage zone, we envision a single logical entity

that is responsible for collecting inputs from all the driverless

and drivered entities in that zone. Such a single point of

synthesis provides a clear point of control for curation of

data and for enforcement of security and privacy policies. The

alternative approach of decentralized collection is technically

feasible, but is harder to implement and control. For these

reasons, it is likely that each coverage zone will have a single

point of collection and synthesis.

We refer to this single point as the zone cloudlet and

envision it being a modest data center with ample compute

and storage resources. Although a single point of control raises

concerns about failure resiliency, there are well-understood

replication techniques that can be leveraged to alleviate this

concern. Which replication technique to use, and how best

to implement failure resiliency are open issues at this point.

The zone cloudlet has an important role to play in controlling

access to situational awareness information. It is the guardian

of knowledge about its zone, and hosts the mechanisms for

enforcing security and administrative policies.

C. On-board Processing and Storage

Each participating vehicle is equipped with a vehicular
cloudlet that has substantial processing capability and local

storage. This cloudlet performs edge analytics on external

sensor readings (e.g. video cameras, possibly multiple per

vehicle) and internal sensor readings (such as speed, engine

performance parameters, occupant alertness, etc.). These edge

analytics transform the high data rate of raw sensor data into

a data stream of much lower bandwidth to the zone cloudlet.

Figure 4 shows the interactions between a vehicular cloudlet

and the zone cloudlet with which it is currently associated. In

typical usage, most of the interactions will consist of event

reports ( 1©) from the vehicular cloudlet to the zone cloudlet.

From time to time, the zone cloudlet may explicitly request

more information or ask for confirmation of an observation

from another vehicle ( 2©). Each vehicular cloudlet caches data

from its zone cloudlet. Within a single zone, it is reasonable to

expect strict cache consistency across all connected vehicles

and the zone cloudlet. The details of the scalable cache
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of color transitions are implementation-specific.

Fig. 4. Heatmap Data Structure

consistency protocol need to be worked out, but it is likely

to include notifications from the zone cloudlet ( 3©). From

time to time, ad hoc queries may be presented by the zone

cloudlet to the vehicular cloudlet ( 4©). These are human-

originated queries that are routed through zone cloudlets to an

appropriately scoped subset of vehicles: e.g., a help request

such as “Does any vehicle that was in zone X at time Y

have a video frame in which this lost dog appears?”). An

authorization mechanism and policy to determine who can

present such requests and how they are routed to specific

vehicles will be needed in a real-world implementation.

The ability to respond to ad hoc requests relies on medium-

term storage of full-fidelity sensor data on vehicular cloudlets.

Netflix’s storage estimate of 3 GB per hour of HD video

suggests that a 3 TB disk (less than $100 today) can retain

nearly 6 weeks of data at full fidelity from a single video

sensor. Even with multiple cameras and other sensors, full-

fidelity retention periods of a day or more are quite feasible.

Such full-fidelity data retention is valuable if a need arises

later to re-process the data with fresh analytics, or to drill

down for more details. These circumstances can often arise in

use cases such as debugging/troubleshooting, forensics, law

enforcement and public service.

D. Reducing Transmission Volume

For the foreseeable future, 4G LTE offers the most plausible

wide-area Internet connectivity from a moving vehicle. The

demand for this resource is intense, and its spectrum-limited

supply is scarce [13]. Hence, it is important to be frugal in

terms of wireless transmission. Both peak bandwidth demand

and total volume of data transmitted should be minimized.

The challenge is to offer real-time awareness of events

sensed by vehicles, while transmitting as few bits as possible.

Having every vehicle report every observation would achieve

the best responsiveness. However, it would also transmit an

enormous amount of redundant information. In crowded areas,

many vehicles may transmit a slight variant of the same

update. A small amount of redundancy is desirable, serving as

cross-validation across vehicles, but the payoff drops rapidly

as redundancy increases. In contrast, there may be few recent

reports from lightly-traveled roads. Since sensing in our con-

text is purely opportunistic, it is essential to make the most of

rare observations. Exploring alternative transmission control

strategies in this space will be important. Both centralized

strategies (in which the zone cloudlet controls the reporting)

and decentralized strategies need to be explored.

One possible decentralized strategy would be for each

vehicle to base its probability of transmission on how well-

informed the zone cloudlet already is about the vehicle’s

current surroundings. This state of knowledge can be captured

in a heat map data structure, as shown in Figure 4. The zone

cloudlet maintains the master copy of this heatmap, and each

vehicle caches those parts relevant to its current location.

Although Figure 4 shows a rectangular grid for simplicity,

its actual shape may be highly irregular to match local map

topography. The cached copy of the heatmap at each vehicle

can be used to modulate reporting. A vehicle entering a gray

area knows that any reports from it will be of high value. In

a red area, it can remain silent more often.

E. Known Unknowns and Unknown Unknowns

Knowledge at the zone cloudlet closely tracks reality, but

it can never be perfect. Important events may have happened

recently, but there may be no vehicle nearby to report them

or their lingering consequences. Delays of many seconds,

possibly stretching to many minutes or tens of minutes, may

occur in obtaining reports from isolated areas. This consitutes

a known unknown because the zone cloudlet can be aware of

its lack of knowledge. This is easiest to see in the context

of a heatmap. Awareness of known unknowns can be used

in modulating reporting by vehicles. If routing is centralized

(e.g., for military or industrial vehicles), a zone cloudlet

can direct vehicles to preferentially traverse gray zones to

dispel darkness. The ideal would be red-hot grid squares

everywhere, yet maintained with lowest transmitted bytes and

few deviations from optimal routes.

A deeper source of ignorance is end-to-end system latency.

The state of the shared information repository in Figure 2 will

always lag reality by at least an amount equal to this quantity.

It includes network transmission delays, as well as queueing

and processing delays at vehicle and zone cloudlets. These

can be significant under conditions of high load, when each

of many vehicles reports a burst of serious events. The peak

processing demand from video analytics can be especially

challenging. Unfortunately, events in the real world tend to be

correlated (e.g., a chain reaction leading to many accidents).



Better algorithms, improved networks, and more powerful

hardware at both ends can help, but there will always be room

for improvement. It will always be the case that the most recent

sensor observations will available at a vehicle, but not yet

known at the zone cloudlet.

From the viewpoint of the zone cloudlet, this gap in

knowledge is an unknown unknown. Fortunately, a reporting

vehicle can detect this situation and transform it into a “known

unknown” by examining its cached data. A real-world obser-

vation that does not appear in the cached map data is likely

to be an unknown unknown to the zone cloudlet (likely, but

not certain, because some other vehicle may have reported the

observation recently). The vehicle can prioritize the reporting

of this event, possibly separating the occurence of a serious

event (transmitted and processed at highest priority) from full

details such as a video segment of the event (arriving later,

and processed at normal priority).

VI. FROM HIGH-LEVEL VISION TO REALITY

Situational awareness is a context-sensitive and personalized

view of the world. A shared real-time information repository

for situational awareness can be the unifying force that holds

together diverse sensor-based real-time information producers

and consumers. For the vehicular theme explored in this

paper, there is already a convergence of technology avail-

ability, user demand, societal commitment, and commercial

opportunity. For example, the Traffic21 initiative at Carnegie

Mellon University [14] aims to “design, test, deploy and

evaluate information and communications technology based

solutions to address the problems facing the transportation

system of the Pittsburgh region and the nation.” In 2016, the

US Department of Transportation announced that Columbus,

OH was the winner of its $40 million Smart City Challenge.

The goal of this effort is “to implement a holistic vision for

how technology can help all residents to move more easily

and to access opportunity” [15]. All over the world, city-scale

entities are looking for ways in which their quality of life can

be improved through sensing and wireless technologies.

Obviously, the path to real-world deployment will not be

easy or short. There are major technical issues to be resolved

and questions to be answered. Some of these issues have

already been mentioned in the preceding sections of this

paper. Others will come to light in the course of detailed

design. A foundational assumption is that video analytics

algorithms of sufficient speed, accuracy and descriptive power

can be developed for reporting events in real-time. Today’s

driverless vehicles demand the speed, but not necessarily the

descriptive power required for event reporting. For example,

it is only necessary to know that an obstacle is a few feet

ahead in order to trigger accident avoidance. Reporting that

obstacle, however, requires knowing whether it is a rock, a

dead animal, a pothole or other type of obstacle. On the other

hand, it may be acceptable to sample the video stream at low

frame rate for purposes of reporting, thus relaxing the speed

requirement. Significant research is needed to develop video

analytics algorithms and necessary specialized hardware for

the appropriate combination of speed, accuracy and descriptive

power. Companies such as RoadBotics [16] have already

begun this task. Privacy is a major concern with continous

video capture in public spaces. Fortunately, recent work by

Wang et al [9] has shown that video can be denatured in

real time on cloudlets to preserve privacy. The denaturing is

reversible under carefully controlled circumstances, to allow

retrospective queries such as searching for a lost child.

In closing, cloudlet-based edge computing is the key to

success. Only by processing video and other high data rate

sensors close to the point of data capture can scalability be

achieved. Otherwise, continuous uploading of video over 4G

would pose daunting bandwidth challenges at large scale.

Situational awareness thus emerges as a “killer application”

for edge computing.
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