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Abstract—As video cameras proliferate, the ability to scalably
capture and search their data becomes important. Scalability is
improved by performing video analytics on cloudlets at the edge
of the Internet, and only shipping extracted index information and
meta-data to the cloud. In this setting, we describe interactive data
exploration (IDE), which refers to human-in-the-loop content-based
retrospective search using predicates that may not have been part of
any prior indexing. We also describe a new technique called just-in-
time indexing (JITI) that improves response times in IDE.
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I. UBIQUITOUS VIDEO CAMERAS

Always-on video cameras are proliferating in the Internet

of Things (IoT). A 2013 survey in the U.K. estimated one

surveillance camera in a public space for every 11 people [1].

Today, virtually every automobile in Russia has a video camera

to record incidents for insurance purposes [2]. Extrapolating

from these trends, a 2013 NSF report [3] predicts that “It will

soon be possible to find a camera on every human body, in

every room, on every street, and in every vehicle.”

The video captured by these cameras is typically stored on

local storage, close to the point of capture. It is examined

only in response to some traumatic event such as a vehicular

accident, a burglary, an accusation of police brutality, or a

terrorist attack. Without ever being examined, most data is
overwritten to reclaim space after a modest retention period.

This represents an enormous loss of knowledge. Embedded in

this data is information relevant to important questions that are

hard to answer today. Can we extract this valuable information

before discarding the raw data? For example, a lost child or

pet may unexpectedly appear in video far from home. Timely

recognition could lead to their rescue. As another example,

video footage from road intersections could reveal those that

have many near misses. Traffic lights or stop signs could then

be installed in time to prevent serious accidents. As a third

example, timely analysis of video from a sidewalk may reveal

a number of people slipping on an icy patch that was missed

by the salt crew. Prompt attention to the icy patch could avert a

serious injury. As a final example, in marketing and sales, real-

time video analytics could reveal that shoppers are ignoring

a new window display. The richness of high-resolution video

content and the open-endedness of deep video analytics make

vision-based sensing especially attractive.
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Fig. 1. Two-level Cloud-Cloudlet Architecture

II. WHY EDGE-BASED VIDEO ANALYTICS?

Video analytics is typically performed in the cloud today.

Using Netflix’s estimate of 3 GB per hour of HD video,

one video stream demands nearly 6.8 Mbps. A 100 Gbps

metropolitan area network (MAN) can only support about

15,000 such video streams. Even upgrading to a 1 Tbps MAN

will only support 150,000 video cameras. Supporting a million

cameras (one per home in a large city) will require nearly

7 Tbps. Shipping all video to the cloud is clearly not scalable.

Our solution is to process video close to the cameras, as

shown in Figure 1. Below today’s unmodified cloud is a second

architectural level consisting of dispersed elements called

cloudlets [4]. These have excellent network connectivity to

associated cameras, sufficient compute power to perform video

analytics, and ample storage to preserve video at full fidelity

for a significant retention period before being overwritten.

Extended retention permits retrospective search of captured

video, as discussed in Section IV. Using the above figure of

3 GB for an hour of HD video, a single 4 TB disk that costs

about $100 today could hold over 50 days of video from one

camera. Only the results of video analytics (e.g., index terms

and metadata such as cloudlet id and timestamp) are shipped

to a global catalog in the cloud. Based on popularity and

importance, small segments of full-fidelity video could also

be shipped to the cloud for long-term archiving.

III. BACKGROUND: VIDEO DENATURING AND INDEXING

Each cloudlet in Figure 1 runs the GigaSight software for

video processing. Since GigaSight has been described in a
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Fig. 2. GigaSight Video Processing Workflow on a Cloudlet

Fig. 3. Examples of STF Object Detection (Adapted from Shotton et al [5])

previous paper [6], we only provide a brief summary here as

background to our new work in Sections IV–VII.

Privacy is a key concern of GigaSight. As shown in

Figure 2, each cloudlet performs denaturing, which refers to

automated, content-specific lowering of fidelity of video in

order to preserve privacy. Isolation between video streams is

ensured by performing the denaturing of each stream within

its own virtual machine (VM). By default, GigaSight blurs all

faces detected in video frames. However, under appropriate

authorization controls, the original undenatured frames can

be retrieved from its VM in order to support use cases such

as looking for a lost child that require faces to be exposed.

GigaSight performs content-based indexing of denatured video

frames using Shotton et al’s Semantic Texton Forest (STF)
algorithm [5], with classifiers trained on the MSRC21 data

set. This enables tagging of video frames with 21 classes of

common objects such as aeroplanes, bicycles, birds, boats,

etc. Figure 3 shows some example images along with the

segmentation performed by STF. Extracted tags are propagated

to the global catalog in the cloud (Figure 1) to support system-

wide searches. GigaSight could easily be extended to use deep

neural networks (DNNs) or other techniques for indexing.

To reduce cloudlet workload, GigaSight only processes

periodic samples of frames from each video stream. The

sampled frames effectively serve as “thumbnails” that are

representative of content for the next N frames. Those next N
frames are not denatured or indexed, but stored in encrypted

form on the cloudlet. Those frames are only processed on

demand, if their thumbnail triggers user interest (typically

during during a search). A typical value of N is 300, thus

giving one denatured and indexed frame every 10 seconds.

IV. INTERACTIVE DATA EXPLORATION

Cloudlet-based video capture, denaturing, and indexing as

discussed in Sections II and III can only partially deliver

the full value of video analytics as outlined in Section I. To

complete the picture, we need a human-in-the-loop interactive

image search capability that embodies the necessary flexibility

and versatility to customize searches for the very specific

needs of a user. To understand why, consider the hypothetical

The owner of a dog has not seen her pet for 24 hours.
A search on foot of the local neighborhood has yielded no
results. Worried and anxious, the owner thinks her pet may
have wandered off to some distant part of the city. She obtains
permission from local authorities to search for her dog in
denatured video on city cloudlets. Assuming a speed of two
miles per hour (two-thirds that of humans), the dog could
have wandered anywhere within an area of 12 square miles
in 24 hours. That is half the size of Manhattan, and contains
over 100,000 surveillance cameras outside residences and
businesses (London is estimated to have 500,000 surveillance
cameras today). In a 24-hour period, even if frames are
denatured and indexed only once every 10 seconds on each
video stream, there will be over 800 million frames to search.
Although “dog” is one of the index terms supported by video
indexing in cloudlets, the hit rate is too high: nearly one in
every thousand indexed frames (0.1%) in this dog-friendly city
has a dog somewhere in it. The index of the global catalog
shrinks the search space from 800 million frames to 800,000
frames but that is still a daunting figure. The owner needs
some tools to help search for her dog, not just any dog. Every
hour of delay reduces the chances of rescuing her pet.

Fig. 4. Use Case: Searching for a Lost Dog

use case in Figure 4 of searching for a lost dog. This is exactly

the kind of public service use case envisioned in Section I.

What kind of image search tools can we provide to help in

scenarios such as Figure 4? The simplest answer would be to

create a high-accuracy object detector for the lost dog using

any of the well-known techniques today such as DNNs or

SVMs, and then use it to index the subset of relevant frames on

cloudlets. Unfortunately creation of an object detector requires

a significant amount of training data, preferably hundreds or

thousands of images. The pet owner may not have such a

large number of images of her pet. She may have at most a

few images, and in some cases she may not have any images

at all. Yet, in her mind’s eye, she has a very clear image of

what her dog looks like.

If the dog is a pure-bred, perhaps there are pre-trained

classifiers available for German Shepherds, Collies, Shetland

Sheepdogs, etc. Using such a classifier to further narrow the

search space would be a natural first step. The ability to

introduce such a classifier easily in the course of a search,

and to only index on demand a small relevant part of the

whole dataset would be extremely valuable. If the dog is not

a pure-bred or is a rare breed, no pre-trained classifier may

be available. In that case, the owner may have to resort to

more generic features such color or fur texture to narrow

the search space. Ultimately, through some combination of

search predicates that are obtained through trial and error on

the actual data, the search space has to be narrowed down

to human scale: i.e., a few hundred images that a user can

manually scan carefully in a reasonable amount of time. If

the owner is fortunate, her pet will be in one of the recently-

captured video frames and the location of the relevant video

camera will help to target her physical search.

In some cases, the search may be for a scene that is

hypothesized to have occurred, with many particulars of the

scene being fuzzy. For example, an insurance adjuster may

want to verify a verbal accident report about a perpetrator
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Fig. 5. IDE: Interleaved Search in Two Spaces

whose attributes are only vaguely known. It is only during the

process of data exploration, after seeing many false positives

and a few false negatives, that the search predicates themselves

get refined. Unlike the previous example, where the target of

the search (precise attributes of missing dog) was clear, even

the target of the search may be fuzzy initially. The absence of

training data for creation of detectors will be even more acute

in these kinds of searches.

Generalizing from these examples, we identify interactive
data exploration (IDE) as an important class of human-centric

search activity on images in which hypothesis formation and

hypothesis validation proceed hand in hand in a tightly-

coupled and iterative sequence. A user constructs an initial

search predicate, gets back a few results, aborts the current

search, and then modifies the search predicate (sometimes

extensively) in the light of these results. This iterative process

continues until the user finds what she is looking for, or

gives up. As illustrated in Figure 5, the user is effectively

conducting two interleaved and tightly-coupled searches: one

on the query space (the space of all possible combinations of

search predicates) and the other on the data space (all images).

This interleaved workflow is consistent with the metaphor that

asking exactly the right question about complex data is often

the key to a major insight. However, the path to converging on

that precise question may be long and convoluted with many

false turns and dead ends. This workflow is the essence of

IDE. If successful, you end with a search query that can be

used as the basis of future classic indexing to rapidly answer

similar queries — e.g., if this specific dog is ever lost again,

the global catalog in Figure 1 will contain an index term to

rapidly locate it.

Classic indexing, such as GigaSight’s implementation from

Section III, is context-free. The index is created in advance of

use, without any knowledge that is only available at the time of

a future search. In contrast, IDE is inherently context sensitive.
The ability to deeply incorporate context-sensitive information

into the search iterations of IDE is crucial to success.

V. JUST-IN-TIME INDEXING

For a human-in-the-loop system, the most precious resource

is user attention. For IDE, we define a user’s attention as being

used well if most of it is spent on (a) examining individual

results (i.e., video frames) to decide if they are true positives
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or false positives, or (b) on thinking about how the predicates

of the current query should be modified for the next iteration

of the IDE. We define user attention as being used poorly if

most of it is spent on (a) waiting for the system to return

results to examine, or (b) dismissing frivolous false positives

from a search with low selectivity. Time is of the essence in

IDE. In the working example of Figure 4, the owner’s sole

focus is finding her lost dog as soon as possible. She would

prefer success sooner rather than later, even at the cost of more

effort from her in IDE. This precludes approaches that defer

IDE for many hours while the system performs background

optimizations such as indexing or data restructuring.

To support IDE, we propose just-in-time indexing (JITI),
a new indexing strategy that exploits the following three

properties of iterative query refinement:

• Temporal locality of search predicates: there is consid-

erable redundancy in the queries posed during an IDE

session. Each query is a refinement on the previous

queries, often repeating many of the search predicates.

• Rapid Refinement: a user typically refines a query after

seeing only tens of results. “Abort search” is frequent.

• Considerable think time: because IDE requires signifi-

cant user reflection, there is an opportunity during think

times to perform indexing.

As Figure 6 illustrates, JITI differs from previous ap-

proaches to indexing in two important ways. First, it is highly

reactive to the current query session, building new indexes (or

augmenting existing indexes) speculatively, on-the-fly during

user think time. JITI exploits temporal locality of search

predicates in the successive iterations of an IDE session by

indexing any new search predicate on its first use. Second,

JITI indexes only a small, adaptive subset of the images,

instead of building complete indexes. This is sufficient because

a user typically refines the content-based search query after

seeing only tens of images returned. It is also necessary, given

the prevalence of expensive predicates for image processing

and the bounded amount of user think time (typically tens

of seconds). While both speculative indexing [7] and partial

indexing [8]–[10] have been proposed previously for relational

databases, this work is the first to combine the two and to apply

them in the context of image search.

We have built a prototype implementation of JITI that

allows us to flexibly explore its design tradeoffs. Our prototype

leverages the concept of early discard, whose importance in

interactive image search was first established by Huston et

al [11]. The code for parameterized image search predicates



(called filters) can be combined using a directed flow graph

(called a filter configuration) into a composite searchlet that

defines a search query. Predefined filters exist for color,

texture, human faces, and many other image primitives. These

can be parameterized during an IDE by the user (e.g. by using

a color or texture patch from a previous result). JITI works at

the granularity of individual filters. Conceptually, all the filters

in the searchlet are executed de novo. However, JITI ensures

that previously computed results can be used whenever they

are still valid (i.e., neither filter code nor filter parameters have

changed). Hence, a searchlet that reuses many previous filters

unmodified will benefit from JITI.

Although our implementation is not integrated with Gi-

gaSight, we expect such integration to be straightforward.

Here, we describe the steps of a search as it would occur

in an integrated implementation. The term “image” in this

description refers to a video frame that has been deemed to be

within scope at the start of an IDE, based on timestamps and

index terms in the global catalog. Scope can be dynamically

changed as an IDE progresses. At the start of an iteration, the

searchlet defining the query is shipped from the user’s search

front-end to all the cloudlets involved. The search proceeds

independently at each cloudlet, and results are streamed back

to the user as soon as each is generated. The search terminates

at all cloudlets as soon as the user aborts the search. By then,

the user has likely seen enough to create an improved searchlet

for the next iteration of the IDE session.

VI. JITI POLICIES

JITI is performed independently at each cloudlet, as a

transparent side effect of the search process. In response to a

search query (defined by a filter configuration), the user starts

seeing results from all the cloudlets intermingled as they are

streamed to her. Her display pauses when the screen is full, but

processing on cloudlets and streaming of results can continue

in the background. Buffered results are presented to the user

as she advances to new screens. The order in which images

are evaluated on a cloudlet is left unspecified, thus allowing

flexibility in optimizing the storage layer. Before applying a

filter to an image, the cloudlet first checks to see if the result

is already available in the index. Early discard ensures that

processing on the image terminates as soon as it is clear that no

path to success is possible with the current filter configuration.

A. Policies Studied

JITI is a broad concept that allows a wide range of flexibility

in its implementation. The design parameters include: when

indexing is triggered, which images are chosen for indexing,

which filters are used in the indexing, how long indexing is

continued, and so on. JITI policies can also vary in the weight

they assign to the current query versus overall query trends.

We have studied the following policies:

1. Current Query Work-Ahead: User think time is applied

solely to working ahead on the current query. This optimizes

for the case that the user requests more screenfuls of images,

but is less effective if the user aborts the query immediately.

O universe of data objects
K number of possible filters
Fj filter j, j = 1, . . . ,K
D a database of objects from O
N number of objects in the database
Oi object with ID i, i = 1, . . . , N
Q a query (a conjunction of filters)
� the number of filters in a given query
tj CPU time (in ms) to evaluate Fj on an object
pj probability an object in D passes Fj ; pj > 0
fj probability a session contains Fj

r probability that a filter used in a session
is re-used within the same session

d time (in ms) to fetch an object from disk
s number of objects in a screenful
ε given an object ID, time (in ms) to check if the object

has been indexed and retrieve its pass/fail outcome

Fig. 7. Notation Used in the Cost Model

2. Popularity-Based: Statistics of filter use over a time

window are maintained, and user think time is used to index

the most popular filter. If indexing proceeds to completion, the

next most popular filter is selected, and so on. This scheme

optimizes for future queries that use these popular filters, at

the expense of current query performance.

3. Efficiency-Based: Policy 2 is extended to recognize that

slower (i.e., computationally more expensive) filters are more

valuable to index because that can reduce user wait time. The

policy also separately recognizes that filters with low pass-

rates are especially valuable for early discard. Inaccuracies in

filter cost estimation and pass rate are challenges.

4. Dimension Switching: Policy 2 is refined to scope popu-

larity to only those filters that are actually used in the current

query. Non-popular filters are evaluated only as needed to

resolve pass/fail outcome. This policy balances the weight of

the current query versus overall query trends.

5. Self-Balancing: This combines the other policies. Between

queries, Policy 3 is used to optimize for future queries. Once

a query is submitted, it is favored as follows. First, Policy

1 is used until the number of images awaiting user attention

exceeds a predefined threshold. Then, Policy 4 is used until

the number of images awaiting user attention exceeds a second

predefined threshold. From that point onwards, Policy 3 is used

until a new query is received from the user.

A comparison of these policies shows that Policy 5 (Self-

Balancing) is the best. We summarize the analysis in the next

section. A more detailed analysis of JITI policies can be found

in our technical report [12].

B. Analysis of Policies

Our analysis is based on a cost model whose notation is

shown in Figure 7. There is a large universe O of data objects

(images, in our case) and a large universe {F1, . . . , FK}, of

filters. Each filter is a binary function that takes an object from

O as its single argument and returns either pass or fail. A given

database D contains N objects, O1, . . . , ON , from O. Users



pose queries to D, where each query Q is the conjunction of

a finite set of filters.

The number of possible filters K is large because they stand

for a huge number of semantic concepts. For example, in

the animal domain alone, there may be separate filters for

each animal species of interest (dogs, cats, raccoons, etc.) and

perhaps even individual breeds within a species. Further, some

feature selectors (e.g., color-selector or texture-selector) can be

used to define an extremely large number of distinct filters. For

such selectors, the user takes one or more exemplar images,

selects a region of interest within each such image, and then

defines a filter looking for “similar” regions in other images,

where similarity is defined based on a color histogram or a

texture histogram. In our implementation there are ≈ 1064

distinct possible color/texture histograms.

Associated with each filter Fj are (1) its execution time: the

(average) time tj in milliseconds to evaluate Fj on an object,

(2) its pass-rate or selectivity: the fraction pj of objects in a

database D that pass Fj , and (3) its session frequency: the

fraction fj of sessions that include Fj . In practice, the system

knows only approximations of these metrics, which are esti-

mated over time. In the absence of information regarding filter

pass rate correlations, we make the reasonable assumption that

an object passes Fj with a probability pj that is independent

of all other filters. The parameter r refers to the probability

that a filter occurring in a query is re-used within the same

IDE session. For the traces in our experiments in Section VII,

r ≈ 0.5. We define d to be the time in milliseconds to retrieve

an object from disk, and s to be the number of objects in a

screenful (s = 6 in our implementaton). Finally, ε is the time

to check if an object has been indexed and, if so, retrieve its

pass/fail outcome. Note that ε � d.

Response time, which is our primary performance metric,

can be greatly affected by the degree of correlation in the

identity of objects that are indexed by different partial indexes.

There are an exponential number of ways in which partial

indexes may overlap. These myriad possibilities do arise in

practice because of early discard in a setting where different

queries may use different filter combinations. To make the

analysis tractable, we focus on simplified scenarios where

a partial index is either complete or empty with respect to

generating a screenful of results for a given query. We refer to

these cases as “effectively complete” and “effectively empty.”

The key insights are still revealed with this simplification.

Consider a query Q = F1 ∧ · · · ∧ F�, when there are

effectively complete indexes on F1 through Fi, and only

effectively empty indexes on Fi+1 through F� (for some i,
0 ≤ i ≤ �). Assume that the filters are evaluated on an object

O in order, i.e., first F1, next F2 if O passes F1, next F3 if O
passes both F1 and F2, and so on. Then the expected response

time, T , for generating a screenful of s objects is:

T =
s · ε

p1 · · · p� + · · ·+ s · ε
pi · · · p� + (1)

s · (d+ ti+1)

pi+1 · · · p� +
s · ti+2

pi+2 · · · p� + · · ·+ s · t�
p�

Intuitively, Equation 1 reveals that we expect to access s
p1···p�

objects in order to find s that satisfy Q. We apply F1 to all

these objects (at cost ε per object). Because of early discard,

subsequent filters are applied to fewer and fewer objects.

There are s
pi+1···p�

objects that pass all indexed filters; these

objects must be fetched from disk (at cost d). Finally, each

non-indexed filter Fj , j = i + 1, . . . , �, costs tj per object.

Equation 1 suggests the following rules-of-thumb:

R1: To minimize response time, first retrieve the outcome of

indexed filters in non-decreasing order of pj and then evaluate

non-indexed filters in non-decreasing order of
tj

1−pj
.

R2: The best indexes to have on hand for a query Q are for

filters in Q that have low pass-rates and slow execution times.

However, the most important aspect is that the indexed filter

occurs in Q.

R3: Because the probability r of intra-session re-use is orders

of magnitude higher than the probability fj of inter-session

reuse for all but the most popular filters, schemes that focus

on filters in the current query (Current Query Work-Ahead

and Dimension Switching) are good choices for minimizing

response times: they are effective both when the user requests

the next screenful and when she instead refines the query.

R4: As long as there remain unindexed highly popular filters,

indexing them is worthwhile. Using
fj
pj
(d+ tj) as the priority

metric in the Efficiency-based scheme is a good choice for

inter-session indexing (assuming we have good estimates for

fj , pj and tj).

Together, these four rules support Self-Balancing as the

preferred policy among the five proposed alternatives.

C. JITI Data Structures

Implementing JITI requires attention to two important index

design considerations: (a) what type of index to use, and (b)

how to structure the index catalog. Our design choices in these

areas are particularly efficient in time and space.

The query workload provides a natural choice for what type

of index to use. Given that our queries are conjunctions of

pass/fail filters, we use bitmapped indexes for each filter. Note

that the distinct values in our bitmapped index are pass, fail
and unknown. The unknown value is necessary because our

indexes are partial: at any point in time, we have evaluated

the filter on only a subset of the images.

We build a bitmapped index on the values pass and fail: i.e.,

an index having a bitmap for which images pass and a bitmap

for which images fail. Images that are unknown are hence

represented only implicitly by their omission from the other

two bitmaps. In this way, inserting new images into a database

incurs no maintenance overhead: such images are implicitly

tagged as unknown with respect to all existing indexes. This

is in sharp contrast to traditional settings, where bitmapped

indexes must be kept up-to-date, incurring high overheads.

Because a typical image is 100KB–10MB, the size of each

(partial) bitmapped index for a filter is 6–8 orders of magnitude



Description Images Hits
S1 Find all images of

a specific person.
2582 8

S2 Find five instances
of theft in a
surveillance image
dataset.

1072 6

S3 Find five pictures
of sailboats or
windsurfers.

281,324 476

S4 Find three pictures
of urban outdoor
scenes.

281,324 18,805

S5 Find ten pictures
from a colleague’s
wedding.

281,324 67

Fig. 8. Search Tasks Emulating IDE Sessions

smaller than the total size of all the images that have been

processed with that filter. This, in turn, implies that even a

large number of indexes can be supported with very fast access

times. Fetching an index is orders of magnitude faster than

fetching the images. Once fetched, an index can reside high in

the memory hierarchy. Moreover, their small space and lack of

maintenance costs means that we can be lazy about discarding

old indexes.

The catalog of all existing indexes is stored as an inverted

index. Because of the large number of potential filters, many

of which are ad hoc, we use the hash of the filter description

as the key for the inverted index. By definition, the filter

description completely characterizes the filter. For example,

it may be (i) the name and version number of a predefined

filter template together with any arguments, (ii) the name,

version number, histogram, and other arguments for a user-

defined color-selector or texture-selector filter, or (iii) the code

binary for a custom code filter.

Together, these design choices make it possible to support

up to tens of thousands of partial indexes, with very fast

access times (orders of magnitude faster than accessing the

images), low space overhead (< 1% overhead for all the

indexes together) and no required maintenance costs.

VII. EXPERIMENTAL RESULTS

The ideal experimental approach to comparing JITI policies

would be to use benchmarks that capture real-world IDE

workloads. Unfortunately, we are at a very early stage of the

evolution of edge computing. It will be many years before

cloudlets and GigaSight are widely deployed, and generate

real-world IDE workloads. In the interim, we emulate IDE-

like workloads by capturing and replaying the actions of real

users in performing search tasks on static image collections.

The hardware setup for our experiments consists of four

servers playing the role of cloudlets, connected to a client

via a 1 Gbps Ethernet switch. All machines have 2.83 GHz

Intel R© Xeon R© processors with 8 GB RAM, and run Ubuntu

Linux. The trace replay approach mentioned above reproduces

captured user workloads with realism and replicability, while

providing tight control of experimental conditions.

S1 S2 S3 S4 S5
User 1 7 7 7 2 6
User 2 6 3 4 2 9
User 3 3 14 4 3 4
User 4 3 3 6 3 2
User 5 3 7 5 4 5
User 6 16 11 5 1 11
User 7 10 3 4 5 2
User 8 14 22 5 1 12

Fig. 9. Queries per IDE Session

We captured traces of eight users on the five different

search tasks summarized in Figure 8. Some of these tasks

are vague by nature, and have many degrees of freedom. S1

and S2 work on relatively small collections of images and

emphasize recall (fraction of relevant images retrieved against

the total number of relevant images in the database). S3–S5

work on a much larger image collection and favor precision

(fraction of relevant images retrieved against the number of

retrieved images). The image repository employed for searches

S3–S5 consists of 32,757 manually ground-truthed personal

photographs augmented with 248,567 images downloaded

from Flickr. A subset of 4,323 randomly-sampled images from

the latter was manually labeled to estimate the number of

matches in the Flickr collection.

A. Observed Query Attributes

Figure 9 shows the number of queries in IDE sessions. The

average of six queries suggests that the IDE process is indeed

iterative. Figure 10 shows the extent to which queries within

an IDE session reuse filters. Repeated use of any filter within

a session constitutes intra-session reuse. The first use of either

a predefined color filter or a popular filter is shown as inter-

session reuse. Subsequent uses of such filters are considered

intra-session reuse. The amount and type of reuse determines

the extent to which JITI can be successful. Filters used

across sessions may be indexed by the Popularity-Based and

Dimension Switching schemes during idle periods between

and during sessions, respectively. Even filters unique to a

session, if reused, benefit from the indexes created by Current

Query Work-Ahead. The Self-Balancing scheme inherits the

benefits of each of these constituent schemes.

The figure shows that reuse occurs in all but six of the

sessions, and that most sessions exhibit both types of reuse.
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Fig. 11. Filter Execution Time and Selectivity (Log Scale on X Axis)

Of the total number of filters used, 70% are repeats. Nearly

half of all filters defined are reused. The vast majority of user-

defined filters are applied to a single session. Predefined filters

tend to be used across sessions.

Queries are refined well before completion. Only 16% of

the queries actually run to completion. For the recall searches,

which are most likely to be exhaustive, 42% of the queries run

to completion. For the precision searches, 7% of the queries

run to completion. Users are able to evaluate their queries

quickly and devise methods for refining them based on a

small number of returned results. On average, users refine their

queries after viewing only 36 images, and the queries process

less than 10% of the images in the repository. Users exhibit

considerable think time in performing the searches. Session

length varies from less than 30 seconds (for U6 performing

S4) to nearly 20 minutes (for U3 performing S5). 97% of the

total search session time is think time. These periods of think

time provide ample opportunities for JITI.

Figure 11 shows the speed and selectivity of the filters that

are used. Over half of the defined filters have pass rates of

10% or less, and nearly one-fifth of the filters have pass rates

of 1% or less. Average filter execution time, shown on a log

scale, varies over three orders of magnitude depending on filter

type. The most expensive filters are those for face and body

detection from the OpenCV library.

B. Effectiveness of JITI

Using trace replay, we compare the performance of JITI to

three other indexing schemes:

• No indexing: This is the worst case scenario.

• Clairvoyant: This is the ideal case, where indexes

already exist for all the filters and images needed.

• Workload-based: We allot a budget of 100 milliseconds

of CPU time per image. We index as many of our

workload’s most popular filters as we can within this

budget. In addition, current query workahead is enabled.

• JITI: Each workload begins with global knowledge of

filter use frequencies across all users. Only this user

and workload are new to JITI. In addition, no indexes

exist for any previously executed filters. This pessimistic

restriction eliminates any benefit that could be realized

from popularity-based indexing prior to the session.
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Fig. 12. Response Times (S1–S5) for Different Indexing Schemes

From the user’s perspective, the primary figure of merit in

IDE is response time, which is defined as the average time over

the course of an IDE session that the user waits to receive a

screenful of results after issuing a query, or requesting the next

screenful of results. Across users and search tasks, Figure 12

compares response times across the four alternative indexing

schemes. Each bar represents the average of three runs. The

standard deviation is shown with error bars where it is large

enough to be visible. The main message of these results is that

JITI offers significant benefit in many cases, and often matches
or exceeds the performance of workload-based indexing.

Figure 13 plots the data points in Figure 12 sorted by

session response time for the no-indexing scheme. For half

of the searches, the response time with no indexing is under
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Fig. 13. Response Time Sorted by No-Indexing Time

2 seconds, so there is little room to improve response time.

For the remaining searches, just-in-time indexing improved

the response time by an average of 38% over no indexing, and

25% over workload-based indexing. The improvement was the

largest in sessions with high filter reuse, and in particular, reuse

of fast, selective filters. Such filters may be indexed extensively

within a few queries, and low selectivity enables large numbers

of images to be discarded rapidly.

VIII. CONCLUSION

The challenges of Internet-scale video capture, storage and

use will become more acute over time, as video cameras

proliferate and their resolution improves. Edge-based comput-

ing on cloudlets can alleviate this pain. By avoiding blind

transmission of captured video to the cloud, cloudlets improve

scalability by lowering ingress bandwidth demand. Only a tiny

fraction of the captured video, selected for their importance

and/or popularity, needs to transmitted to the cloud. By pro-

viding ample storage at the edge for extended retention periods

of tens of days, cloudlets provide the opportunity for users to

retrospectively discover important information that is buried

in the captured video. These discoveries can have significant

personal, business, and societal benefits.

Classic indexing on cloudlets using well-known computer

vision algorithms is necessary, but not sufficient, to support the

process of discovery from captured video. The final phase of

this process is almost always context-sensitive, and requires

incorporation of crucial information whose significance was

not known at the time of index creation. In this paper, we have

described a human-centric, interactive search process (IDE) for

this final phase of discovery that leverages system support for

early discard of image data at cloudlets. We have shown that

the user think time and temporal locality inherent in IDE can

be leveraged to perform partial and incremental indexing (JITI)

for context-sensitive attributes. Our experiments confirm that

JITI can improve interactive performance during IDE.
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