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Edge Analytics in the 
Internet of Things

M any of the “things” in the 
Internet of Things (IoT) are 
video cameras, which are 
proliferating at an astonish-
ing rate. In 2013, it was esti-

mated that there was one surveillance cameras 
for every 11 people in the UK.1 Video cameras 

are now common in police 
patrol cars2,3 and almost 
universal in Russian passen-
ger cars.4 The emergence of 
commercial products, such 
as Google Glass and GoPro, 
point to a future in which 
body-worn video cameras 
will be commonplace. Many 
police forces in the US are now 
considering the use of body-
worn cameras.5 The report of 
the 2013 NSF Workshop on 
Future Directions in Wireless 
Networking predicts that “it 
will soon be possible to find a 
camera on every human body, 
in every room, on every street, 

and in every vehicle.”6

What will we do with all this video? To-
day, most video is stored close to the point of 
capture, on local storage. Its contents are not 
easily searched over the Internet, even though 
there are many situations in which timely re-
mote access can be valuable. For example, at a 
large public event such as a parade, a lost child 

might be seen in the video of someone record-
ing the event.7 Surveillance videos were crucial 
for discovering the Boston Marathon bombers 
in 2013. In general, an image captured for one 
reason can be valuable for some totally unre-
lated reason. Stieg Larsson’s fictional work, The 
Girl with the Dragon Tattoo (Alfred A. Knopf, 
2010), embodies exactly this theme: a clue to 
solving a crime is embedded in the backgrounds 
of old crowd-sourced photographs.

This richness of content and the possibil-
ity of unanticipated value distinguishes video 
from simpler sensor data that has historically 
been the focus of the sensor network research 
community. The sidebar presents many hypo-
thetical use cases for crowd-sourced video. An 
Internet-scale searchable repository for crowd-
sourced video content, with strong enforce-
ment of privacy preferences and access controls, 
would be a valuable global resource. Here, we 
examine the technical challenges involved in 
creating such a repository. In particular, we 
propose GigaSight, a hybrid cloud architecture 
that is effectively a content delivery network 
(CDN) in reverse.

GigaSight: A Reverse CDN
A key challenge for the cloud is the high cumu-
lative data rate of incoming videos from many 
cameras. Without careful design, this could 
easily overwhelm metropolitan area networks 
(MANs) and ingress Internet paths into a cen-
tralized cloud infrastructure, such as Google’s 
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large datacenters or Amazon’s Elastic 
Compute Cloud (EC2) sites. In 2013, 
roughly one hour’s worth of video 
was uploaded to YouTube each sec-
ond. That corresponds to 3,600 con-
current uploads. Scaling well beyond 
this to millions of concurrent uploads 
from a dense urban area will be dif-
ficult. Today’s high-end MANs only 
have a bandwidth of 100 Gbps. Each 
such link can support 1080p streams 
from only 12,000 users at YouTube’s 
recommended upload rate of 8.5 Mbps. 
A million concurrent uploads would re-
quire 8.5 Tbytes per second.

To solve this problem, we propose 
GigaSight, a hybrid cloud architecture 
that uses a decentralized cloud com-
puting infrastructure in the form of 
virtual machine (VM)-based cloud-
lets (see Figure 1).8 A cloudlet is a new 
architectural element that arises from 

Figure 1. The GigaSight architecture. It uses a decentralized cloud computing 
infrastructure in the form of VM-based cloudlets.

H ere we present some hypothetical use cases for crowd-

sourced video.

Marketing and Advertising
Crowd-sourced videos can provide observational data for ques-

tions that are difficult to answer today. For example, which 

billboards attract the most user attention? How successful is a 

new store window display in attracting interest? Which clothing 

colors and patterns attract the most interest? Are there regional 

preferences?

Theme Parks
Visitors to places like Disneyworld can capture and share their 

experiences, including rides, throughout the entire day. With 

video, audio, and accelerometer capture, the recreation of rides 

can be quite realistic. An album of a family’s visit can be shared 

via social networks such as Facebook or Google+.

Locating People, Pets, and Things
A missing child was last seen walking home from school. A search 

of crowd-sourced videos from the area shows that the child was 

near a particular spot an hour ago. The parent remembers that 

the child has a friend close to that location. She calls the friend’s 

home and locates the child.

When a dog owner reports that his dog is missing, a search of 

crowd-sourced videos captured in the last few hours may help 

locate the dog before it strays too far.

Public Safety
Where are the most dangerous intersections, with an accident 

waiting to happen? Perhaps an accident hasn’t happened yet, 

but it could just be a matter of time. Video analytics of intersec-

tions could lead to the timely installation of traffic lights.

Many other public safety improvements are also possible: 

uneven sidewalks that are causing people to trip and fall; timely 

detection of burned-out street lights that need to be replaced, 

new potholes that need to be filled, and icy road surfaces and 

sidewalks in need of immediate attention.

Fraud Detection
A driver reports that his car was hit while it was parked at a res-

taurant. However, his insurance claims adjuster finds a crowd-

sourced video in which the car is intact when leaving the 

restaurant.

Other law and order opportunities abound. For example, 

when a citizen reports a stolen car, his description could be used 

to search recent crowd-sourced video for sightings of that car to 

help locate it.

Crowd-Sourced Video: Use Cases
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the convergence of mobile computing 
and cloud computing. It represents the 
middle of a three-tier hierarchy: mobile 
device, cloudlet, and cloud. A cloud-
let can be viewed as a “data center in 
a box” that “brings the cloud closer.” 
Although cloudlets were originally 
created to address end-to-end latency 
in interactive applications, the use of 
cloudlets in GigaSight is based solely 
on bandwidth considerations.

In the GigaSight architecture (de-
scribed in detail elsewhere9), video 
from a mobile device only travels as 
far as its currently associated cloudlet. 
Computer vision analytics are run on 
the cloudlet in near real time, and only 
the results (recognized objects, rec-
ognized faces, and so on), along with 
metadata (such as the owner, capture 
location, and timestamp) are sent to 
the cloud. The tags and metadata in 
the cloud can guide deeper and more 
customized searches of the content of a 
video segment during its (finite) reten-
tion period on a cloudlet.

An important type of “analytics” 
supported on cloudlets is automated 
modification of video streams to pre-
serve privacy. For example, this might 
involve editing out frames or blurring 
individual objects within frames. What 
needs to be removed or altered is highly 
specific to the owner of a video stream, 
but no user has time to go through and 
manually edit video captured on a con-
tinuous basis. This automated, owner-
specific lowering of fidelity of a video 
stream to preserve privacy is called de-
naturing (discussed further in the next 
section).

It is important to note in Figure 1 that 
cloudlets are not just temporary staging 
points for denatured video data in route 
to the cloud. With a large enough num-
ber of cameras and continuous video 
capture, the constant influx of data at 
the edges will be a permanent stress on 
the ingress paths to the cloud. Just buff-
ering data at cloudlets for later trans-
mission to the cloud won’t do. Because 
video will be streaming 24/7, there will 
never be a “later” when ingress paths 

are unloaded. The potential bandwidth 
bottleneck is at the access and aggrega-
tion networks and not in the core net-
work with its high-speed links.

Preprocessing videos on cloudlets 
also offers the potential of using con-
tent-based storage optimization al-
gorithms to retain only one of many 
similar videos from colocated cameras. 
Thus, cloudlets are the true home of 
denatured videos. In a small number 
of cases, based on popularity or other 
metrics of importance, some videos can 
be copied to the cloud for archiving or 
replicated in the cloud or other cloud-
lets for scalable access. But most videos 
will reside only at a single cloudlet for 
a finite period of time (typically on the 
order or hours, days, or weeks). In a 
commercial deployment of GigaSight, 
how long videos remain accessible will 
depend on the storage retention and 
billing policies.

Note that Figure 1 is agnostic regard-
ing the exact positioning of the cloud-
lets in the network. One option is to 
place numerous small cloudlets at the 
network edge. An alternative is to place 
fewer but larger cloudlets deeper in the 
network—for example, at the metro-
politan scale. Our analysis suggests 
that small cloudlets close to the edge is 
the better alternative.9

Denaturing
Denaturing must strike a balance be-
tween privacy and value. At one ex-
treme is a blank video: perfect privacy 
but zero value. At the other extreme is 
the original video at its capture resolu-
tion and frame rate. This has the high-
est value for potential customers, but 
it also incurs the highest exposure of 
privacy. Where to strike the balance 
is a difficult question that is best an-
swered individually, by each user. 
This decision will most probably be 
context-sensitive.

Denaturing is a complex process 
that requires careful analysis of the 
captured frames. State-of-the-art com-
puter-vision algorithms enable face 
detection, face recognition, and object 

recognition in individual frames. Ac-
tivity recognition in individual se-
quences is also possible. However, 
preserving privacy involves more than 
blurring (or completely removing) 
frames with specific faces, objects, or 
scenes in the personal video. By using 
other objects in the scene, or by com-
paring videos from other users taken 
at the same place or time but with dif-
ferent privacy settings, we might still 
deduce which object was blurred and 
thus of value to the person who cap-
tured the video. The user’s denaturing 
policy must also be applied to videos 
that were captured by others at ap-
proximately the same time and place. 
Simply sending the denaturing rules 
to the personal VMs of other parties 
is undesirable; this would expose at a 
metalevel the sensitive content.

One possible solution, proposed by 
Jianping Fan and colleagues,10 is to 
send weak object classifiers to a cen-
tral site where they are combined with 
a global concept model. This model 
could then be returned to the personal 
VMs. Of course, this approach requires 
videos to be temporarily saved in the 
personal VM until the central site has 
received any video uploaded at the same 
time and place. Any video that is up-
loaded later could then simply be dis-
carded, to avoid keeping videos in the 
personal VM for too long.

In its full generality, denaturing 
might involve not only content modifi-
cation but also metadata modification. 
For example, the accuracy of location 
metadata associated with a sequence 
of video frames might be lowered to 
meet the needs of k-anonymity in loca-
tion privacy.11 Whether the contents of 
the video sequence will also have to be 
blurred depends on the video’s visual 
distinctiveness—a scene with the Eiffel 
Tower in the background is obviously 
locatable even without explicit location 
metadata.

In the future, guidance for denatur-
ing might also be conveyed through so-
cial norms that deprecate video capture 
of certain types of scenes or in certain 
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locations. A system of tagging locations 
or objects with visual markers (such as 
QR codes) could indicate that video 
capture is unwelcome. We can imagine 
video capture devices that automati-
cally refrain from recording when they 
recognize an appropriate QR code in 
the scene. In addition, denaturing al-
gorithms on a cloudlet might also strip 
out scenes that contain such a code. In 
the long run, we can envision the emer-
gence of an ethics of video capture in 
public. Many broader societal issues, 
such as the ability to subpoena cap-
tured but encrypted video, add further 
complexity. Clearly, denaturing is a 
deep concept that will need time, effort, 
and deployment experience to fully un-
derstand. GigaSight opens the door to 
exploring these issues and to evolving a 
societally acceptable balance between 
privacy and utility.

In the GigaSight prototype, a per-
sonal VM on the cloudlet denatures 
each video stream in accordance with 
its owner’s expressed preferences. This 
VM is the only component, apart from 
the mobile device itself, that accesses 
the original (nondenatured) video. Fig-
ure 2 illustrates the processing within 
a personal VM. Denaturing is imple-
mented as a multistep pipeline.

In the first step, a subset of the video 
frames is selected for actual denatur-
ing. Our initial experiments showed 
that denaturing is too compute-in-
tensive to perform at the native video 
frame rate.9 Consequently, the denatur-
ing process results in two output files: 
a low frame-rate “thumbnail video” 
file that provides a representative over-
view of video content for indexing and 
search operations, and an encrypted 
version of the original video. Both out-
puts are stored on the cloudlet, outside 
the personal VM. The encryption of 
the full-fidelity video uses a per-session 
AES-128 private key that is generated 
by the personal VM. If a search of the 
thumbnail video suggests that a partic-
ular segment of the full-fidelity video 
might of interest, its personal VM can 
be requested to decrypt and denature 

that segment. This newly denatured 
video segment can then be cached for 
future reuse.

After sampling video frames, meta-
data-based filters with low computa-
tional complexity are applied. This 
early-discard step is a binary process: 
based on the time, location, or other 
metadata, the frame is either completely 
blanked or passed through unmodified. 
Then, we apply content-based filters 
that are part of the preference specifica-
tions for denaturing. For example, face 
detection and blurring using specified 
code within the personal VM might be 
performed on each frame. Figure 3 il-
lustrates the output of such a denatured 
frame.

Indexing and Search
The indexing of denatured video con-
tent is a background activity performed 

by a separate VM on a cloudlet. To 
handle searches that are time-sensi-
tive (such as locating a lost child) or to 
search for content that is not indexed, 
custom search code encapsulated in a 
VM can directly examine denatured 
videos. For each tag produced by the in-
dexer, an entry is created in a dedicated 
tag table of the cloudlet database. Each 
entry contains the tag, the ID of the 
video segment, and a confidence score. 
For example, an entry “dog, zoo.mp4, 
328, 95” indicates that our indexer de-
tected with 95 percent confidence a dog 
in frame 328 of the video zoo.mp4. Af-
ter extraction, these tags are also prop-
agated to the catalog of video segments 
in the cloud.

The throughput of indexing depends 
on the number of objects that must be 
detected. Because this number is po-
tentially very high, we propose first 

Figure 2. Cloudlet processing in the GigaSight prototype. Denaturing is 
implemented as a multistep pipeline.
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applying only classifiers for the most 
popular objects sought in the database. 
Classifiers of less popular objects could 
be applied on an ad hoc basis if needed. 
As a proof of concept, the GigaSight 
prototype uses a Python-based imple-
mentation of Jamie Shotton and his 
colleagues’ image categorization and 
segmentation algorithm,12 with clas-
sifiers trained on the MSRC21 dataset 
mentioned in their work. This enables 
the detection and tagging of 21 classes 
of common objects such as airplanes, 
bicycles, birds, and boats.

GigaSight uses a two-step hierarchi-
cal workflow to help a user find video 
segments relevant to a specific context. 
First, the user performs a conventional 
SQL search on the cloud-wide catalog. 
The query might involve metadata such 
as time and location, as well as tags ex-
tracted by indexing. The result of this 
step is a list of video segments and their 
denatured thumbnails. The identity 
(the host names or IP addresses) of the 
cloudlets on which those video seg-
ments are located can also be obtained 
from the catalog.

Viewing all of the video segments 
identified in the first step might over-
whelm the user. We therefore perform 
a second search step that filters based 
on actual content to reduce the re-
turned results to a more relevant set. 
This step is computationally intensive 
but can run in parallel on the cloud-
lets. This step uses early discard, as de-
scribed by Larry Huston and his col-
leagues,13 to increase the selectivity of 
a result stream. Using a plug-in inter-
face, image-processing code fragments, 
called filters, can be inserted into the 
result stream. These code fragments let 
user-defined classifiers examine video 
segments and discard irrelevant parts 
of them, thus reducing the volume of 
data presented to the user. We provide 
a suite of filters for common search at-
tributes, such as color patches and tex-
ture patches. For more complex image 
content, the user can train his or her 
own filters offline and insert them into 
the result stream.

To illustrate this two-step workflow, 
consider a search for “any images taken 
yesterday between 2pm and 4pm during 

a school outing to the Carnegie Science 
Center in Pittsburgh, showing two chil-
dren in a room full of yellow balls and 
one of the children wearing his favorite 
blue striped shirt.” The first step of the 
search would use the time and location 
information and the “face” tag to nar-
row the search. The result is a poten-
tially large set of thumbnails from de-
natured videos that cover the specified 
location. From a multihour period of 
video capture by all visitors, this might 
only narrow the search to a few hun-
dred or few thousand thumbnails. Us-
ing a color filter tuned to yellow, fol-
lowed by a composite color/texture 
filter tuned to blue and striped most 
of these thumbnails can be discarded. 
Only the few thumbnails that pass this 
entire bank of filters are presented to 
the user. From this small set of thumb-
nails, it is easy for the user to pick the 
result shown in Figure 3.

GigaSight only processes video that 
is voluntarily shared. Datasets gath-
ered via crowd-sourcing often exhibit 
a sampling bias toward popular events 
or news, and the “long tail” is much 
less covered. We believe this content 
bias will be lower in GigaSight, because 
many of its data sources (police on-
body cameras, automobile dashboard 
cameras, and so on) involve continuous 
capture of video. Conversely, pruning 
the collection of videos at locations and 
times, where much redundant footage 
is available, would limit the richness of 
data collected by GigaSight. An “un-
interesting” detail that is eliminated in 
the pruning could be exactly the crucial 
evidence for an important future inves-
tigation, such as one of the scenarios in 
the sidebar.

Automotive Environments
The GigaSight architecture is especially 
relevant to automobiles. For the fore-
seeable future, cloud connectivity from 
a moving automobile will be 3G or 4G. 
An important question is whether cloud-
lets should be placed in automobiles or 
at cell towers. We see value in both al-
ternatives, as shown in Figure 4. This 

Figure 3. An example of a denatured video frame, based on the following query: 
“Images taken yesterday between 2pm and 4pm during a school outing to the 
Carnegie Science Center in Pittsburgh, showing two children in a room full of yellow 
balls and one of the children wearing his favorite blue striped shirt.”
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architecture can be viewed as a mapping 
of Figure 1 to the automotive context.

Continuous capture and real-time 
analytics of car-mounted video cameras 
can help to improve road safety. For ex-
ample, if the computer vision analytics 
on your automobile’s cloudlet recog-
nizes a pothole, dead animal, or fallen 
tree branch, it can transmit the coordi-
nates of the hazard (including a brief 
video segment) to its cell tower cloud-
let. The cloudlet can share this informa-
tion promptly with other cars associ-
ated with that cell tower. With advance 
warning of the hazard, those cars can 
proactively shift lanes to avoid the haz-
ard. Such transient local knowledge can 
also be provided when an automobile 
first associates with a cell tower. There 
is a subtle trust issue implicit in this ca-
pability: a hazard report is assumed to 
be truthful. Requiring a video segment 
to support the report can help increase 
confidence, but it is difficult to verify 
when and where that video segment 
was captured. This trust issue points 
to the need for certified sensor output, 
where the provenance and value of the 
sensed data is not in doubt.14,15

An automobile cloudlet could also 
perform real-time analytics of high-
data-rate sensor streams from the en-
gine and other sources, alerting the 
driver of imminent failure or to the 
need for preventive maintenance. In 
addition, such information can also be 
transmitted to the cloud for integration 
into a database maintained by the vehi-
cle manufacturer. Fine-grain analysis of 
such anomaly data might reveal model-
specific defects that can be corrected in 
a timely manner.

Cloudlet Size and Placement
The scalability of GigaSight depends 
on the specific configurations of cloud-
lets and their locations in the Internet. 
We have analyzed the tradeoff between 
cloudlet computational capacity and 
the number of cloudlets, with the goal 
of maximizing both the number of si-
multaneous users per cloudlet (N) and 
the number of denatured and indexed 

frames that each user contributes per 
unit of time (F).9 This conceptual 
tradeoff is illustrated in Figure 5. For 
values of F < FE, the number of users 
supported is limited to NE users. For 
values F > FE, the architecture is com-
pute bound and N < NE.

Using measurements from the Gi-
gaSight prototype and extrapolating 
hardware improvements over a five-
year timeframe, the analysis compares 
the two alternative design strategies, 
illustrated in Figure 6. In Figure 6a, 
many small cloudlets are deployed close 
to the edge of the Internet. In Figure 
6b, a single large cloudlet covers a city-
sized area. The analysis concludes that 
edge cloudlets (Figure 6a) scale better 
than MAN cloudlets (Figure 6b) from 
the viewpoint of performance. In five 
years, the analysis estimates that one 
edge cloudlet would be able to support 
approximately 120 users with real-time 
denaturing and indexing at the rate of 
30 frames per second. However, be-
cause management costs decrease with 
centralization, a more holistic analysis 
might suggest an optimum size that is 

somewhat larger than that suggested by 
performance considerations alone.

T he central theme of Giga
Sight is processing edge-
sourced data close to the 
point of capture in space 

Figure 4. GigaSight for cars. Continuous capture and real-time analytics of car-
mounted video cameras can help to improve road safety when shared via cell tower 
cloudlets.

Figure 5. Cloudlet sizing tradeoff. This 
figure illustrates the tradeoff between 
the number of users (N) and the 
processed framerate per user (F). The 
shaded region represents the range of 
feasible choices with fixed network and 
processing capacity.
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and time. As the density of high-data-
rate sensors in the IoT grows, it will 
become increasingly difficult to sus-
tain the practice of shipping all cap-
tured data to the cloud for process-
ing. The decentralized and federated 
architecture of GigaSight, using VMs 
on cloudlets for flexibility and isola-
tion, offers a scalable approach to data 
collection. Sampling and denaturing 
data immediately after capture enables 
owner-specific lowering of fidelity to 
preserve privacy. Performing edge an-
alytics (such as indexing) in near real 
time on freshly denatured data greatly 
improves the time-to-value metric of 
this data. The raw data at full fidelity is 
still available (during the finite storage 

retention period) for on-demand dena-
turing and big data processing. Finally, 
GigaSight supports interactive, content-
based time-sensitive searches that the 
indexer didn’t anticipate.

Also, although we’ve focused on 
video cameras as sensors here, any 
data type in the IoT that has a high 
data rate can potentially benefit from 
such a global repository. For exam-
ple, each GE jet aircraft engine gener-
ates 1 Tbyte of sensor data every 24 
hours.16 The airframe of the Boeing 
787 generates half a Tbyte of sensor 
data on every flight.17 Modern au-
tomobiles—especially the emerging 
self-driving family of cars—generate 
comparable amounts of sensor data. 

These are just a few of examples of 
IoT data sources that have high data 
rates. Many of the points made in this 
article apply directly to this broad 
class of sensors. 
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