
Cloudlet-Based Cyber-Foraging for Mobile Systems in
Resource-Constrained Edge Environments

Grace A. Lewis, Sebastian Echeverría, Soumya Simanta, Ben Bradshaw, James Root
Carnegie Mellon Software Engineering Institute

4500 Fifth Ave.
Pittsburgh, PA USA
+1 (412) 268-5800

{glewis, secheverria, ssimanta, bwbradshaw, jdroot}@sei.cmu.edu

ABSTRACT
First responders and others operating in crisis environments
increasingly make use of handheld devices to help with tasks such
as face recognition, language translation, decision-making and
mission planning. These resource-constrained edge environments
are characterized by dynamic context, limited computing
resources, high levels of stress, and intermittent network
connectivity. Cyber-foraging is the leverage of external resource-
rich surrogates to augment the capabilities of resource-limited
devices. In cloudlet-based cyber-foraging, resource-intensive
computation is offloaded to cloudlets – discoverable, generic
servers located in single-hop proximity of mobile devices. This
paper presents several strategies for cloudlet-based cyber-foraging
and encourages research in this area to consider a tradeoff space
beyond energy, performance and fidelity of results.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems. D.2.11
[Software Architectures]: Domain-Specific Architectures,
Patterns.

General Terms
Design, Experimentation, Performance

Keywords
Cyber-foraging, cloudlet, mobile cloud computing, code offload,
computation offload, software architecture, cloud computing

1. INTRODUCTION
Mobile applications are increasingly used by first responders

and others operating in crisis and hostile environments in support
of their missions. These environments are not only at the edge of
the network infrastructure, but are also resource-constrained due
to dynamic context, limited computing resources, intermittent
network connectivity, and high levels of stress. Applications that
are useful to field personnel include speech and image

recognition, natural language processing, and situational
awareness. These are all computation-intensive tasks that take a
heavy toll on the device’s battery power and computing resources.

Cyber-foraging is the leverage of external resource-rich
surrogates to augment the capabilities of resource-limited mobile
devices [1]. Most existing cyber-foraging solutions rely on
conventional Internet for connectivity to the cloud or strategies
that tightly couple mobile clients with servers at deployment time.
These solutions are not appropriate for resource-constrained
environments because of their dependence on multi-hop networks
to the cloud and static deployment. Cloudlet-based cyber-foraging
relies on discoverable, generic, stateless servers located in single-
hop proximity of mobile devices. These characteristics make
cloudlets a good match for the characteristics of resource-
constrained environments. However, in our research in exploring
cloudlet-based and other forms of cyber-foraging we have found
that most solutions do not address the challenges of “being at the
edge.”

The goal of this paper is to present alternatives for cloudlet-
based cyber-foraging and set the stage for the need for expanding
this work to support the quality attributes required in resource-
constrained edge environments. Section 2 presents a short
summary of related work in this area. Section 3 describes
cloudlet-based cyber-foraging. Section 4 presents five strategies
for cloudlet provisioning along with experimental data that shows
the pros and cons of each strategy. Finally, Section 5 presents our
ideas for new research directions for cyber-foraging to support
resource-constrained edge environments.

2. RELATED WORK
Multiple cyber-foraging systems have been developed that

differ in terms of the strategy that they use to leverage remote
resources — where to offload, when to offload, and what to
offload. Where to offload varies between remote clouds and local
servers located in proximity of mobile devices. When to offload
varies between a runtime decision or an “always offload”
strategy. To support runtime offload decisions, one strategy is to
manually or automatically partition code into portions that either
run on the mobile device or on a remote machine. At runtime an
optimization engine — typically targeted at optimizing energy
efficiency, performance, or network usage — decides whether the
code should execute locally or be offloaded to a remote machine
(surrogate). An example of such cyber-foraging system is MAUI
[2]. CloneCloud [3] follows the same code partitioning principle
but automatically partitions code at the thread level without the
need for manual code annotation. Other cyber-foraging solutions
assume that the computation-intensive code exists in a remote
machine and the cyber-foraging task therefore becomes one of
service discovery and composition. HPC-as-a-service [4] is an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
ICSE '14, May 31 - June 07 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/06…$15.00.

example of this “always offload” strategy. What to offload is what
has the most variation, ranging from threads [3] to methods [2] to
services [4] to full programs [1], with many other options in
between. Our work is based on cloudlets, as described in [1].
Despite all the work in cyber-foraging, our research has showed
that (1) there is emphasis on the algorithms to support code
offload and state synchronization with minimal focus on software
architecture and quality attributes beyond energy efficiency and
performance, (2) there is little guidance on how to support quality
attributes such as survivability, resilience, trust and ease of
deployment, critical in edge environments

3. CLOUDLET-BASED CYBER-
FORAGING

Cloudlets are discoverable, generic, stateless servers located
in single-hop proximity of mobile devices, that can operate in
disconnected mode and are virtual-machine (VM) based to
promote flexibility, mobility, scalability, and elasticity [1]. In our
implementation of cloudlets, applications are statically partitioned
into a very thin client that runs on the mobile device and a
computation-intensive server that runs on the cloudlet. A
reference architecture for cyber-foraging is presented in Figure 1.
The main elements of the architecture are the Mobile Client and
the Cloudlet Host. A Discovery Service running inside the
cloudlet host publishes Cloudlet Metadata that is used by the
Cloudlet Client to determine the appropriate cloudlet for offload
and to connect to the cloudlet. Metadata can range from a simple
IP address and port to connect to the cloudlet server to complex
data structures describing cloudlet capabilities. Every application
is composed of a Cloudlet-Ready Client App that corresponds to
the client portion, the Server Offload Code that corresponds to the
server portion, and the Client App Metadata that contains
information that is used by the cloudlet client and the cloudlet
server to negotiate and carry out the code offload process. Once a
cloudlet is identified for offload, the cloudlet client sends the
server offload code and client app metadata to the Cloudlet
Server. The cloudlet server then deploys the server code inside a
Guest VM inside the VM Manager. The server offload code can
range from provisioning instructions, to source code, to
application packages, to complete VMs. Once the deployment is
complete, the cloudlet server is notified that the server is ready for
execution and the client app is launched.

4. CLOUDLET PROVISIONING
In addition to cloudlet discovery, a key aspect of cloudlet-

based cyber-foraging is cloudlet provisioning—transferring and
starting the server code on the cloudlet so that it is ready to use by
the client running on the mobile device. In the original cloudlet
proposal, cloudlet provisioning is done via VM synthesis. In this
approach, an application overlay that corresponds to the server
portion of a client-server application is created by calculating the
binary difference between a base VM image file and the VM
image file after installation of the sever on the base VM image.
The overlay is carried on the mobile device and transferred at
runtime to a discovered cloudlet, where it is applied to the base
VM image so that the resulting VM image corresponds to the
running server. The full implementation is described and analyzed
in [5].

4.1 Previous Work: VM Synthesis and
Application Virtualization

One of the main problems with the original proposal for VM
synthesis is the large size of the overlays that have to be

transferred from the mobile device to the cloudlet at runtime. As
reported in [5], the size of the overlay in our experiments ranged
from 43.55 MB for a Windows-based face recognition application
to 176.23 MB for a Linux-based speech recognition application.
The sizes of these two application overlays go up to 172 MB and
343 MB respectively if the overlay includes the memory snapshot
in additional to the disk overlay for quicker startup time
(Prototype 2 in [5]). Since then, we have added two optimizations
to the VM synthesis prototype in an attempt to reduce overlay
size as well as application-ready time. The first optimization is
pipelining so that overlay decompression is done incrementally as
opposed to having to wait until the complete overlay is received.
The overlay is compressed using LZMA2 with the XZ stream
compression format. At runtime, the compressed overlay is sent in
chunks to the cloudlet. Each chunk is placed in a queue,
decompressed, and appended to a file. The second optimization is
the use of QEMU copy on write 2 (qcow2) as the VM image file
format. The advantage of qcow2 is that there is no need to use
xdelta to calculate the binary difference between the complete
VM and the base VM because the qcow2 file already corresponds
to the changes with respect to the base VM. This means that there
is no need for extra processing after decompression. However, as
can be seen in Table 1, even though application-ready time (time
between start of cloudlet provisioning and acknowledgement of
server start) improves by ~50% on average compared to the times
reported for Prototype 2 in [5], the overlay size is still large. This
is a problem given that our experiments confirm that network
payload size is directly proportional to energy consumption as has
been stated by many others.

We started exploring application virtualization as a way to
decrease payload size, which uses an approach similar to OS
virtualization, by “tricking" the software into interacting with a
virtual rather than the actual environment. To accomplish this, a
runtime component intercepts all system calls from an application
and redirects these to resources inside the virtualized application.
In this approach, what is sent to the cloudlet at provisioning time
is an application package that gets deployed into a VM that
matches the OS of the virtualized application. The full
implementation is described, analyzed, and compared to VM
synthesis in [6]. Although payload size is on average 25% of the
size of an overlay in VM synthesis, it is still challenging for use in
resource-constrained environments.

4.2 Alternate Provisioning Strategies
After conducting a systematic literature review in the area of

architecture strategies for cyber-foraging, as well as our
prototyping experience, we have noted that even though there are
many clever and sophisticated algorithms for code offload, there
is very little emphasis on quality attributes beyond energy
efficiency, performance and network usage. Although these
quality attributes are important in resource-constrained edge
environments, there is little discussion of cyber-foraging when
there is intermittent or no network connectivity to the cloud. What
is required in resource-constrained environments is rapid
provisioning and deployment of cloudlets, discovery of available
capabilities, and support for disconnected operations. While we
believe that cloudlets are best suited for these environments, we
are looking at alternate strategies for cloudlet-based cyber-
foraging that instead of trying to get the computation from the
mobile device to the cloudlet at runtime, they focus on moving
industrial cloud computing and mobile computing practices to the
edge.

Cloudlet HostMobile Client

Legend

System
Boundary

Cloudlet-
Ready

Client App
1

Custom
Runtime
Component

Cloudlet
Client

File Read/
Write

Call

File

VM Manager

Guest VM 1

Server 1

Cloudlet
Server

Discovery Service

Cloudlet Metadata

Broadcast

3rd Party
Runtime
Component

Server Offload Code + Metadata

Cloudlet-
Ready

Client App
2

Cloudlet-
Ready

Client App
n...

...

Guest VM 2

Server 2

Guest VM n

Server n

...
Cloudlet

Metadata

Client
App 1

Metadata

Client
App n

Metadata

Client
App 2

Metadata

Server 1
Offload

Code

Server 2
Offload

Code

Server n
Offload

Code

Figure 1. Reference Architecture for Cloudlet-Based Cyber-Foraging

4.2.1 Cached VM
In Cached VM the cloudlet is pre-provisioned with VM

images that correspond to capabilities that match the client apps
on the mobile device. Each VM image file has a unique service
identifier. At runtime, the mobile device instructs the cloudlet to
start the VM that corresponds to the service for the launched
client app.

4.2.2 Cloudlet Push
In Cloudlet Push, the cloudlet is not only pre-provisioned

with VM images for mission-specific capabilities, but also the
corresponding mobile client apps. At runtime, the mobile device
queries the cloudlet for available capabilities, similar to accessing
an app store. The cloudlet pushes the selected client app to the
mobile device and then starts the corresponding VM.

4.2.3 On-Demand VM Provisioning
In On-Demand VM Provisioning a commercial cloud

provisioning tool is used to “assemble” a VM. Our
implementation uses Puppet from www.puppetlabs.com. At
runtime, the mobile device sends a provisioning script to the
cloudlet. The cloudlet executes the provisioning script to
construct and start an appropriate VM.

4.3 Quantitative and Qualitative Comparison
of Cloudlet Provisioning Strategies

To perform a quantitative and qualitative comparison of the
five different cloudlet provisioning strategies, we conducted a set
of experiments using three computation-intensive applications:
face recognition (FACE), speech recognition (SPEECH), and
object recognition (OBJECT). We used a Galaxy Nexus with
Android 4.3 as a mobile device and a Core i7-3960x based server
with 32 GB of RAM running Ubuntu 12.04 as the cloudlet. We
created a self-contained wireless network (using Wi-Fi 802.11n at
2.4 GHz, 65 Mbps) to be able to isolate network traffic effects.
Energy was measured using a PowerMeter from Monsoon
Solutions. The results of these experiments are shown in Table 1.

The table shows that in general the alternate provisioning
strategies consume less energy because payload size is smaller,
which in turn leads to shorter and more consistent application-
ready times across applications. In Cached VM the payload size is
very small (service ID) and application-ready time is basically the
time that it takes to start the corresponding VM. In Cloudlet Push
the payload is small (client app from cloudlet to mobile device)
and the application-ready time is the time that it takes to install
the app on the mobile device. In On-Demand VM Provisioning
the payload is very small (Puppet provisioning script) but the
application-ready time is longer (similar to VM Synthesis times)
because it corresponds to the time that it takes to assemble the
VM according to the script and then start that VM. This also
contributes to higher energy consumption because we measure the
energy consumed during the complete cloudlet provisioning
process. For the Linux applications the energy consumption is
still lower because the client is idle instead of sending data. For
Windows applications this is not the case because the application-
ready times are much longer because the installation processes are
more complicated. However, as shown in Table 2, the tradeoff is
that these alternate strategies rely on cloudlets that are pre-
provisioned with server capabilities that might be needed for a
particular mission, or that the cloudlet is connected to the
enterprise, even if just at deployment time, to obtain the
capabilities. We argue that this requirement is not unreasonable in
edge environments and that it makes cloudlet deployment in the
field easier and faster while leveraging the state of art and best
practices from the cloud computing industry. A pre-provisioned-
VM-based solution also promotes resilience and survivability by
supporting rapid live VM migration in case of cloudlet mobility,
discovery of more powerful or less-loaded cloudlets, or
unavailability due to disconnection or disruption. It supports
scalability and elasticity by starting and stopping VMs as needed
based on number of active users (which is typically bounded in
edge environments because group size is known). In addition, the
request-response nature of many of the operations needed in the

field also lends itself to an asynchronous form of interaction in
which the cloudlet can continue processing and send results back
to a mobile device (directly or by re-routing) as network
conditions change.

5. NEW RESEARCH DIRECTIONS
Cyber-foraging in resource-constrained environments would

greatly benefit from moving cloud computing concepts and
technologies closer to the edge so that surrogates, even if
disconnected from the enterprise, can provide offload capabilities
that can work at the edge. We would like to motivate research that
takes an architectural approach to cyber-foraging and addresses a
larger tradeoff space that includes disconnected operations,
resiliency, survivability, ease of deployment, and trust. The work
presented in this paper represents a step in that direction.

6. ACKNOWLEDGMENTS
This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. This material has been approved for public
release and unlimited distribution (DM-0000774).

REFERENCES
[1] Satyanarayanan, M., Bahl, P., Cáceres, R., Davies, N. 2009.

The Case for VM-Based Cloudlets in Mobile Computing.
IEEE Pervasive Computing vol.8, no.4, 14–23.

[2] Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A.,
Saroiu, S., Chandra, R., Bahl, P. 2010. MAUI: Making
Smartphones Last Longer with Code Offload. In:
Proceedings of the 8th International Conference on Mobile
Systems, Applications, and Services (MobiSys '10), pp. 49–
62. ACM, New York.

[3] Chun, B., Ihm, S., Maniatis, P., Naik, M., Patti, A. 2011.
CloneCloud: Elastic Execution between Mobile Device and
Cloud. Proceedings of the 6th Conference on Computer
Systems (EuroSys '11), pp. 301–314. ACM, New York.

[4] Duga, N. 2011. Optimality Analysis and Middleware Design
for Heterogeneous Cloud HPC in Mobile Devices. Doctoral
Thesis. Addis Ababa University.

[5] Simanta, S, Lewis, G., Morris, E., Ha, K., and
Satyanarayanan, M. 2012. A Reference Architecture for
Mobile Code Offload in Hostile Environments Proceedings
of the Joint Working IEEE/IFIP Conference Software
Architecture (WICSA) and European Conference on
Software Architecture (ECSA), pp.282 - 286.

[6] Messinger, D., Lewis, G. 2013. Application Virtualization as
a Strategy for Cyber Foraging in Resource-Constrained
Environments (Technical Report CMU/SEI-2013-TN-007).
Pittsburgh: Software Engineering Institute, Carnegie Mellon
University.

Table 1. Experiment Data for Cloudlet Provisioning Strategies

Applications

Optimized VM
Synthesis

Application
Virtualization

Cached VM Cloudlet Push
On-Demand VM

Provisioning

(1) (2) (3) (1) (2) (3) (1) (2) (3)
(1)
*

(2) (3)
(1)
*

(2) (3)

FACE (Windows) 55 53.4 57.8 14 14.3 10.5 0.00 8.2 10.3 0 7.9 13.8 0 112.7 129.1

OBJECT (Linux) 332 175.7 333.3 29 21.9 24.5 0.00 11.6 13.5 0 11.7 16.9 0 211.0 244.0

SPEECH (Windows) 194 85.9 175.5 66 62.5 66.6 0.00 12.2 14.7 0 12.8 18.2 0 237.6 269.2

SPEECH (Linux) 147 99.0 172.5 68 38.3 54.2 0.00 12.2 14.9 0 12.8 18.2 0 94.1 109.3
Columns under each strategy are (1) Payload Size (MB), (2) Application-Ready Time (s), and (3) Client Energy (J)
* Size of payload is less than 1KB

Table 2. Qualitative Comparison of Cloudlet Provisioning Strategies

Optimized VM

Synthesis
Application

Virtualization
Cached VM Cloudlet Push

On-Demand VM
Provisioning

Cloudlet
Content*

Exact Base VM
VM compatible
with Server code

Service (VM)
repository

Repository of paired
VMs (Server code)
and Client Apps

 VM provisioning
software

 Server code
components

Mobile
Device

Content**

 Application
Overlays

 Client Apps

 Virtualized
server code

 Client Apps
Client Apps None

 VM provisioning
scripts

 Client Apps

Payload Application Overlay
Virtualized Service
Code

Service ID Client Apps
VM Provisioning
Script

Advantages

Cloudlet can run
any server code that
can be installed on a
Base VM

Portability across
OS distribution
boundaries

Supports server code
updates as long as
service interface
remains the same

Supports most client
nodes with
distribution at
runtime

Server code can be
assembled at
runtime

Constraints

Requires exact Base
VM which limits
distributions and
patches

All server code
dependencies have
to be captured at
packaging time

Cloudlet is provisioned
with service VMs
required by client apps
(or has access to them)

Cloudlet has a client
app version that
matches mobile
client OS version

Cloudlet has all
required server
code components
(or access to them)

* In addition to Cloudlet Server ** In addition to Cloudlet Client. Client Apps include Metadata.

