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Abstract
This paper investigates the use of drones for live inspection in the
construction industry. The key technical challenge is the real-time
registration of the drone video feed to the architectural plan. We
present and evaluate three different approaches for registration and
propose an edge-based prototype using visual features. Our evalua-
tions show that GPS alone is not sufficient for accurate registration,
but with visual features, accuracies within ten centimeters can be
achieved.
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1 Introduction
The U.S. construction industry is estimated to be over $1.8 trillion by
2022 [4]. A recent McKinsey report [1] estimates that productivity
in this industry has only improved at about 1% per year over the past
20 years. The use of drones for inspection of progress at construction
sites, with prompt detection and reporting of construction errors, has
emerged as a promising approach to improving productivity [6].

The use of drones in construction faces two challenges. First, per-
forming real-time analytics on drone-sourced videos requires more
processing power than what is available on a small, lightweight and
inexpensive drone. Second, drones typically run Linux or an em-
bedded RTOS, while engineering and architectural software such as
Autodesk Revit and Navisworks are only implemented for Windows.
Direct, real-time registration of drone observations on engineering
drawings offers the highest potential for productivity improvement,
yet this is not feasible today. Even when mobile devices such as
tablets are used at construction sites today, they are only used to
view a PDF file of engineering drawings. This is only slightly better
than viewing a hard-copy printout.
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In this paper, we describe our experience in using edge computing
to enable drone-sourced video analytics for live building inspection.
The substantial computing resources of a cloudlet are used to meet
the high computational demands. At the same time, the virtualization
capability of a cloudlet is used to run a Windows virtual machine
(VM) that contains the original engineering and architectural draw-
ings for the construction site as well as the Autodesk software that
was used to create those drawings. Accurate real-time registration of
drone observations on drawings emerges as a key challenge in this
setting. We focus on addressing the following problem: When the
analytics pipeline detects a construction defect in the drone-sourced
video, where exactly on the corresponding drawing should the error
be noted? While localization has been studied extensively [11] [14],
our focus is not on absolute coordinates but on coordinates relative
to an engineering drawing. One can view this problem as an inverted
form of augmented reality (AR): rather than annotating the real
world with virtual observations (classic AR), our goal is to annotate
a virtual world (engineering drawing) from real-world observations.
A person living in the virtual world (e.g., an engineer or architect at
a remote Internet location), should be able to see annotations created
in real-time by a drone flight.

The main goal of this paper is to illustrate the potential of using
drones for live video analytics in construction industry by showcas-
ing building inspection as a use case. We briefly introduce the current
uses of drones in construction industry in Section 2 and describe the
case study conducted and its setup in Section 3. We explore the per-
formance of live registration and the accuracy obtained using various
techniques from Section 4 to Section 6. In Section 6 we present our
proposed solution of using feature-based registration. We describe
related work in Section 8. In Section 9 we have a discussion and
describe areas of future research and finally conclude in Section 10.

2 Background: Drones in Construction
The use of drones in the construction industry is still in its infancy.
Drones have been used to inspect hard-to-reach parts of a construc-
tions site, and to take ad-hoc aerial photographs of the site. Sys-
tematic use of drones to improve productivity of the construction
process is just beginning.

One of the most sophisticated uses of drones in construction
to date involves the production of a 360◦ time-lapse video of the
construction progress. This is accomplished by periodic precisely-
controlled flights around a site to capture high-resolution imagery
from all directions. After each flight, the captured data is sent to the
cloud for offline processing. As the position of the drone in flight
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Figure 1: Completed Tepper Building (October 2018)

Figure 2: Revit 3D model of Tepper Building

can never be perfectly controlled, the offline processing will visually
match the captured images to each other and to images from past
flights. These are then stitched together and presented as an HTML5
visualization that lets one view the progress of the construction from
any direction and over time. Although this is a valuable capability,
it has two key limitations. First, the process is inherently offline.
Second, manual effort is needed to register drone observations on
engineering drawings.

Our goal is to overcome both these limitations through a a live,
interactive drone-based inspection system. During a drone flight,
captured video is streamed to a ground-based cloudlet. The system
generates a synthetic view, registering and superimposing the live
drone view on top of the corresponding portions of the engineering
drawings. An important benefit of live video analytics over offline
analytics is that it is possible to actuate the drone in real time. This
allows zooming in/out the camera or changing the flight path of the
drone based on current observations, thus enabling immediate follow-
up of trouble spots, and re-imaging (typically closeups) of specific
features. Accurate online positioning is critical for other construction
applications such as live thermal mapping, where thermal imagery
could be used to identify leaks, and inspect them up close within the
same drone flight.

3 Case Study: CMU Tepper Building
The Tepper Building is a new 315,000 square feet building that
was completed in September 2018 to house the Business School
at Carnegie Mellon University. Fig. 1 shows this building shortly
after completion of construction. Our use of drones in this construc-
tion project occurred close to its completion, in the late spring and
summer of 2018.

We obtained detailed engineering plans of this building from
the architectural firm that designed the building. These plans were
provided as a set of files for the Revit software package. The plans
include both 3D models of the building, as well as 2D elevations
from different directions (e.g., Fig. 2 and Fig. 3). Industry standards
specify the accuracy of these inputs to be within one-quarter inch
(roughly 0.6 cm) of actual construction. This quantity serves to

Figure 3: Two Revit Elevation Views of Tepper Building

bound the drone positioning accuracy that we seek to achieve —
there is no point in being more accurate than the plans themselves!

For drone flights, we used a DJI Phantom 4 Pro UAV that is
equipped with a variety of sensors (GPS, altimeter, etc.) and a 4K
steerable video camera. During each flight, we capture both the video
and sensor data, and stream these to a ground-based cloudlet. The
cloudlet has a copy of the building model, and attempts to register
and overlay the drone video on top of the model view. The cloudlet
we used to develop our prototype has an eight-core Intel® Core™ i7-
5960X processor (3.00GHz) with 32 GB of memory and an NVIDIA
GeForce GTX 960 GPU.

Figure 4 illustrates our overall system architecture. The drone
communicates over DJI’s proprietary Lightbridge 2 wireless tech-
nology [5] with a controller held by a human operator. The wireless
channel carries flight control signals from the controller to the drone.
In the other direction, it carries video, GPS and other sensor data.
The controller relays the video and other sensor streams over WiFi
or 4G LTE to the ground-based cloudlet. Two VM instances are con-
figured on the cloudlet. One VM instance runs the Gabriel platform
that was originally developed for wearable cognitive assistance [10],
but is repurposed here for drone video analytics. This VM also runs
a SIFT-based localization pipeline (discussed in Section 6) on the ar-
riving video frames. The extracted value is passed on to the Autodesk
VM instance. In an ideal implementation, the latter VM instance
would just run the Revit software. However, our initial experiments
showed that the current Revit implementation is too slow in redraw-
ing its model to reflect drone updates. We are tracking down the
source of this performance slowdown. In the interim, to achieve
real-time tracking, we feed the Revit model to a Unity engine that
is able perform real-time redisplay in response to drone-sourced
location updates to Revit files.

Using this experimental setup, we aim to answer the following
questions:

(1) When relying solely on GPS and position sensors, what is
the accuracy of positioning? Is this sufficient to accurately
register the drone camera view to the building model?

(2) Assuming near-perfect computer vision, how accurately can
we estimate the positions of certain building features relative
to reference features?

(3) Using real-world computer vision how close can we come to
the above ideal?
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Figure 4: System Architecture

Ground GPS-based Absolute
Truth Measurement Error
(m) (m) (m)
7.62 9.34 1.72
7.62 9.11 1.49
7.62 6.27 1.35

14.94 16.72 1.78
14.94 13.68 1.26
14.94 13.52 1.42

Average error is 1.50 m
Standard deviation is 0.21 m

Figure 5: Measured GPS Horizontal Error

4 Built-in Drone Position Sensors

If we can accurately determine the position and orientation of the
drone, then we can calculate the view frustum of its camera. Assum-
ing the building model has been calibrated to real-world coordinates,
we can then determine precisely where the drone camera view in-
tersects the model, and thus localize any visible issues onto the
model. In this section we explore if the measurements from GPS
and position sensors of the drone are accurate enough to satisfy our
requirement.

The specifications of DJI Phantom 4 Pro drone gives Hover Accu-
racy Range, a loosely related metric to GPS positioning accuracy, to
be 0.5 m in the vertical direction and 1.5 m in the horizontal direction.
While this specification helps set the expectation for its GPS-based
positioning accuracy, exact numbers need to be measured.

Horizontal Accuracy: To measure the horizontal accuracy of the
drone’s GPS receiver, we compared the distance of two known loca-
tions to the calculated distance from the drone’s GPS readings using
the Haversine formula. Fig. 5 shows the horizontal GPS accuracy
results. The average distance measurement error is 1.50 m with a
standard deviation of 0.21 m.

Altitude Accuracy: The DJI mobile SDK makes available only
the relative altitude with respect to the take-off location rather than
absolute altitude from the sea level. To evaluate the accuracy of
such relative altitude, we tied ropes of 4 different lengths with a
small weight to the drone. We recorded the altitude reading while
taking-off by flying the drone straight up to a position in which
the rope is tightened and vertical to the ground with the weight
barely touching the ground. We then flew the drone briefly for a
minute and took another measurement when landing. We took three
experiments for each rope length. Fig. 6 shows the measured altitude
results. The average take-off altitude errors ranges from 6 cm to
18 cm. The landing altitude errors, ranging from 17 cm to 48 cm, are
significantly larger than take-off errors due to sensor drift.

Thus, GPS and barometers alone cannot provide the needed accu-
racy for our view registration task. Note that in this paper we have
not measured orientation errors; these can only further degrade the
registration accuracy.

5 Near-Ideal Computer Vision
Instead of trying to accurately determine the drone’s absolute posi-
tion, we investigate whether visual features can be used to directly
register the drone’s views on the engineering drawings. To control
variables and get an idea of the theoretical limits of this approach,
we use artificial easily-detected features in this section. In particular,
fiducial markers [7] [9] [17] have been widely used for positioning
and pose estimation for many computer vision and augmented reality
applications. These markers leverage judiciously designed patterns
to achieve reliable detection of key points and represent the simplest,
most accurate visual approach.

We place a few markers at known positions on the wall as refer-
ence markers. We use the detected coordinates of reference markers
in a test image together with their wall position to calculate the
transform matrix (a homography [19]) that relates the pixels in the
test image to wall coordinates. Using the calculated homography,
we are able to transform any image points to wall coordinates.

To evaluate the accuracy of our method, we placed 100 ArUco
markers [9] on a building’s sidewall, as shown in Fig. 7. These
markers are printed on four pieces of tabloid size paper as 5x5
grids. Each marker is 4.6 cm by 4.6 cm in size and 0.8 cm away
from adjacent markers in the same grid. The horizontal and vertical
distance among grids are 61.0 cm. We took 54 test images from
different viewpoints with our drone. We chose 8 corner markers as
reference points and evaluated the view registration errors for the
rest of detected markers in each test image. For each test marker, the
calculated coordinates of its four corners are compared against their
wall positions. Fig. 9 shows the cumulative distribution function
(CDF) of the registration errors along the horizontal and vertical
directions of the wall. Over 90% of the errors are less than 1 cm
while the worst cases are less than 6 cm. These results come close
to the allowed errors (0.6 cm) of the engineering drawings and
demonstrate the potential of using visual features for precise view
registration.

6 SIFT: Real-World Computer Vision
In the real world, it is not possible to have fiducial markers placed
around the building to aid inspection. However, there are many
naturally-occurring distinctive features such as corners of windows,
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Ground
Truth (m)

Take-Off Altitude
Error (m)

Landing Altitude
Error (m)

0.63 0.13 ± 0.10 0.17 ± 0.17
1.27 0.06 ± 0.02 0.41 ± 0.39
1.85 0.18 ± 0.15 0.28 ± 0.15
2.49 0.17 ± 0.15 0.48 ± 0.12

Figure 6: Drone Altitude Error Figure 7: Fiducial Markers Drone Image Figure 8: Tepper Reference Images
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Figure 9: Registration Error using Fiducial Markers

brick patterns and other architectural components which allow hu-
mans to easily find correspondences between the building image and
the engineering drawing. A variety of computer vision techniques
have been developed to find distinctive regions in an image. In partic-
ular, Scale Invariant Feature Transform (SIFT) features [15] describe
distinctive regions that characterize an image. These features are
robust to transformations such as scale, rotation, and illumination,
which often occur in drone images. SIFT has been widely used
in various computer vision tasks such as image stitching, image
registration, object detection, tracking, and robot localization.

Matching SIFT features across two inputs requires them to have
similar visual appearances; however, the engineering drawing does
not have similar visual features as a camera image. This makes it
impossible to directly match the drone’s camera view to the virtual
engineering drawing. To overcome this challenge we add a layer of
indirection. We first capture a handful of references images — these
are wide-angle images of the exterior of the building taken from a
few different locations. Fig 8 shows an example reference image
of the Tepper Quad building. These reference images are manually
registered to the drawings using key features such as corners of
walls and windows. During the drone flight, we can now use SIFT
matching to find correspondences between the live camera view
and the reference images, and then transitively, find the matching
coordinates in the engineering drawing.

In our implementation, the cloudlet stores a database of refer-
ence images that span the exterior of Tepper building along with
an offline, pre-computed set of SIFT features from these images.
For an incoming frame or query image from the drone, we first
use its GPS coordinates to perform coarse localization and narrow
down the number of reference images against which the frame has

to be matched. The cloudlet then extracts SIFT features of the query
frame and performs approximate nearest neighbor search using the
FLANN library [16] to match its features to the SIFT features of the
reference images. Thus, for each of the typically three thousand or
so features extracted from the query frame, we obtain a candidate
match and reference image id. A simple voting scheme is used to
retrieve the top 4 reference images having the largest number of
candidate matches to the query image.

To register the drone view to the reference image we find the
projective transform that maps feature correspondences between the
two images. Projective transform or homography requires that the
points chosen in a scene be coplanar; this assumption generally holds
in our case as facades of a building are largely planar. To estimate
the parameters of the homography transform we use the RANSAC
algorithm [8]. RANSAC also helps us refine our feature matches as
it removes spurious matches that do not fit our hypothesis. Fig. 11
shows an example SIFT feature match between a query image and
a reference image. The red bounding box shows the region on the
reference image to which the query image maps using the computed
homography transform. A query image is considered to be correctly
registered if the best homography returned by RANSAC has at least
20 inlier points.

Once we register the drone view to a reference image, we need
to find its position on the engineering drawing. As we had already
computed and saved the mapping from the reference image to the
engineering drawing, we simply need to multiply the homography
obtained above by this mapping to produce a single transform from
query image pixels to coordinates of the engineering drawing. Fig. 10
gives the overall flow of our registration algorithm.

7 Evaluation
We evaluate the accuracy of our localization approach by calculating
the error between the estimated position of particular points and the
ground truth positions in the engineering drawings. For this, we se-
lected distinct points such as corners of windows on the engineering
drawing whose positions in the coordinate system are known. We
manually find the pixel coordinates of these points in query images,
compute their positions in the engineering drawing based on the
output of our registration algorithm, and compare these values to the
actual locations in drawings. Fig. 12 shows the CDF of positioning
error for 548 points over 167 query frames. Most of the time, our
system is able to localize the camera view to the engineering drawing
to within 10 cm of accuracy, and within 20 cm over 95% of the time.
Note that our system is not able to find a valid mapping for every
frame. As mentioned above, if a sufficient number of inliers is not
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(a) Step 1: Register query image on the reference image (b) Step 2: Project the mapping on to engineering drawing

Figure 10: Registration pipeline

Figure 11: Example of SIFT feature matching between query
image (left) to reference image (right).
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Figure 12: Registration Error using SIFT matching

found, no output is produced. Approximately 20% of the frames
tested resulted in no solution. Just as the accuracy of the approach
is important, the decision on the placement of the compute needs
consideration. Can the compute be done solely on the drone with the
results of its position shipped back? Or is there a need to offload to a
cloudlet?

One concern is whether the localization pipeline can be executed
fast enough for use on the live drone feed. In particular, SIFT feature
extraction is notoriously compute intensive, which impedes real-
time use. In our prototype, we use a GPU implementation of the
SIFT algorithm [2] that can process a 1280x720 image in 14-15 ms
on our GPU. Approximate nearest neighbor matching takes about
75 ms. The complete pipeline, therefore, takes on average 97 ms
for a 720p image when run on a cloudlet which has an eight-core,
3 GHz Intel® Core™ i7-5960X processor with 32 GB of memory
and an NVIDIA GeForce GTX 960 GPU. Thus, with the assistance
of the ground-based cloudlet, we are able to accuately localize the
drone over ten times per second, enabling real-time use at reasonable
flight speeds.

In contrast, if we attempt to run the SIFT-based localization algo-
rithm on drone hardware, performance drops by an order of magni-
tude. On an Intel® Joule™ 570x module, a 1.7 GHz quad-core em-
bedded SoC comparable to processors used in high-end smartphones
and more capable than typical drone platforms, our algorithms com-
pletes in 857 ms for a 720p image. The significant difference in
drone-based and edge-based processing capability is corroborated in
Wang et al. [20] in an object detection context.

Therefore, for this application, the ground-based edge comput-
ing infrastructure serves two improtant purposes. Not only do the
cloudlets significantly speed up the localization by an order of mag-
nitude, they also allow execution of Windows-based proprietary
architectural software in VMs.

A video demo of our prototype can be found in
https://youtu.be/odOXFBpMdG8.

8 Related Work
Image-based localization is a widely researched area in computer vi-
sion and robotics. Some of its applications include urban navigation,
location recognition, and augmented reality on mobile devices. For
localization, we have used a feature-based image retrieval approach
taken by Irschara et al. [11] and Sattler et al. [18]. Other popular
approaches include SLAM [12] and PTAM [13] where they simul-
taneously construct the 3D model of the environment and localize
the camera pose within this map in real-time. Our work differs from
them in that, while these works map to points in the physical world,
we register the live view to the architectural model which is the
golden standard in construction. Recent approaches to image-based
localization that use deep-learning [3] are still in early stages and do
not perform as well as feature based methods.

9 Discussion and Future Work
The construction industry has seen a more rapid adoption of drones
than any other commercial sector. From site surveying to main-
tenance, drones are being utilized in all stages of a construction
lifecycle. Most use-cases of the drone today are restricted to offline
processing, where the data captured from the drone are uploaded
to the cloud to create topographic maps, 3D mesh files or other
formats for visualization. While offline analytics has its advantages,
live-analytics using drones in construction is an area of topical in-
terest. Live-analytics of drone feed enables the potential to actuate
the drone in real time. Our work is a first step towards realizing that
vision.

5



A major impediment to drone-sourced live video analytics is the
lack of processing power available on a lightweight and compact
drone. In this work, we leverage edge computing and existing tech-
niques in computer vision to realize live-registration of drone view
onto virtual architectural drawings. Live-registration is a key step in
realizing many applications such as live-mapping, monitoring, and
real-time error detection. Decisions that used to take hours or days
can be done in minutes using live video analytics.

Of course, our work represents just the initial forays into this
application space. Many interesting near term and long term re-
search questions are raised by our work. Our current prototype uses
manually-registered reference images. It may be possible to auto-
mate this aspect, for example by using long-term mean GPS readings
to accurately locate the reference images, or by using precisely-
placed fixed cameras. In addition our system uses homographic
transforms, which make sense when dealing with planar surfaces;
more sophisticated mappings may be needed to robustly handle par-
tially constructed walls, or curved facades. Likewise, although SIFT
features are robust to rotations in the camera plane, they are not
effective with out of plane rotations. More robust features will be
needed for proper matching when the drone is obliquely facing a
wall. In addition, it may be possible to train a DNN to directly detect
architecturally significant features that can be directly mapped to the
engineering drawing without requiring intermediate reference im-
ages. Finally, the ultimate goal of inspection is to find any variance
between the partially-constructed building and the plans; automating
such anomaly detection will require further investigation.

10 Conclusion
This paper investigated the potential use of drones in the construction
industry, and demonstrated a working prototype of a live inspection
use case. Key to this is the use of live visual registration to the archi-
tectural plans made possible with support of ground-based cloudlet
infrastructure. We believe the combination of semi-autonomous
drones and live video analytics will be a source of significant pro-
ductivity gains for the construction industry in the near future.
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