
On-Demand VM Provisioning for
Cloudlet-Based Cyber-Foraging in

Resource-Constrained Environments

Sebastián Echeverŕıa, James Root, Ben Bradshaw, and Grace Lewis

Carnegie Mellon Software Engineering Institute
4500 Fifth Ave.

Pittsburgh PA, USA
+1 (412) 268-5800

{secheverria,jdroot,bwbradshaw,glewis}@sei.cmu.edu

Abstract. Mobile applications are increasingly used by first responders,
medics, researchers and other people in the field support of their missions
and tasks. These environments have very limited connectivity and com-
puting resources. Cloudlet-based cyber-foraging is a method of oppor-
tunistically discovering nearby resource-rich nodes that can increase the
computing power of mobile devices and enhance the mobile applications
running on them. In this paper we present On-Demand VM Provision-
ing, a mechanism for provisioning cloudlets at runtime by leveraging the
advantages of enterprise provisioning tools commonly used to maintain
configurations in enterprise environments. We present details of a proto-
type for On-Demand VM Provisioning and the results of a a quantitative
and qualitative evaluation of the prototype compared to other cloudlet
provisioning mechanisms. The evaluation shows that On-Demand VM
Provisioning shows promise in terms of flexibility, energy consumption,
maintainability and leverage of cloud computing best practices, but can
be challenging in disconnected environments, especially for complex ap-
plications with many dependencies.

Key words: cyber-foraging, cloud computing, mobile computing, mo-
bile cloud computing, virtual machine provisioning, cloudlets, software
architecture, configuration management

1 Introduction

Mobile applications are increasingly used by first responders and other field per-
sonnel in support of their missions and tasks. These environments are not only
at the edge of the network infrastructure, but are also resource-constrained due
to limited computing resources, intermittent network connectivity, and in some
cases dynamic context and high levels of stress. Applications that are useful to
field personnel include speech and image recognition, natural language process-
ing, sensor data collection, and situational awareness. These are all computation-
intensive tasks that take a heavy toll on the device’s battery power and comput-
ing resources.



2 Sebastián Echeverŕıa et al.

Cyber-foraging is the leverage of external resource-rich surrogates to aug-
ment the capabilities of resource-limited mobile devices [26]. Most existing cyber-
foraging solutions rely on conventional Internet for connectivity to the cloud or
strategies that tightly couple mobile clients with servers at deployment time.
These solutions are typically not appropriate for resource-constrained environ-
ments because of their dependence on multi-hop networks to the cloud and static
deployments. Cloudlet-based cyber-foraging relies on discoverable, generic, state-
less servers located in single-hop proximity of mobile devices. Applications that
leverage cloudlet-based cyber-foraging are typically set up as a thin client that
runs on the mobile device and a computation-intensive server that runs on the
cloudlet. At runtime, once an appropriate cloudlet has been discovered by a mo-
bile device it has to be set up to provide the capabilities that are needed; we call
this cloudlet provisioning.

Provisioning tools are commonly used in enterprises to set up and maintain
the configurations of the computers owned by an organization [25]. These tools
are used to quickly set up a computer/server with all the components that are
required for the machine to provide a predefined computing environment (i.e.,
organizational computing baselines). They are usually also used to ensure that
the required state and configuration is maintained over time, as changes are
made to configurations and components. Some of these tools also work at a
lower level, helping with the task of setting up virtual machines according to
a certain configuration [29]. This type of tool could be used in cyber-foraging
solutions, in particular for cloudlet provisioning. However, little research has
been done in the use of provisioning tools at smaller scale and potentially in
resource-constrained and disconnected environments.

The goal of this paper is to present and analyze a mechanism called On-
Demand VM Provisioning that leverages the best practices that provisioning
tools offer to enterprise environments by adapting them to the cyber-foraging
context. These advantages include automation of the setup process, flexibility in
the selection and inclusion of components in a virtual machine (VM), and the
use of mature tools with proven capabilities and support.

The remainder of this paper is organized as follows. Section 2 presents a
summary of related work in cyber-foraging and provisioning tools. Section 3 de-
scribes cloudlet-based cyber-foraging and the requirements that cloudlet-based
solutions have to take into account. Section 4 describes the On-Demand VM
Provisioning mechanism and the challenges of applying enterprise provisioning
tools in resource-constrained environments. Section 5 describes the evaluation
and selection process that we followed to select an appropriate provisioning tool.
Section 6 presents the architecture and design of the On-Demand VM Provi-
sioning prototype for cloudlet provisioning. Section 7 presents the results of the
system evaluation. Finally, Section 8 presents conclusions and future research
directions.



On-Demand VM Provisioning 3

2 Related Work

Previous work on cyber-foraging has presented different approaches on how to
partition code to be offloaded to a remote server. Systems like MAUI [6] offload
only specific methods, while others like CloneCloud [5] offload whole processes.
Other approaches work at higher levels of abstraction by offloading complete
applications along with their environments [11] [12] [26]. These systems also
differ on when they define what to offload. Some systems decide what to offload
at runtime [6] [5], while others compose applications in such a way that the
offloadable pieces are defined at design and implementation time [26] [12].

The work that is most similar to that proposed in this paper is cyber-foraging
systems in which setup instructions are provided to the offload target. In the
Collective Surrogates system [9] the mobile device sends a small program which
is simply a script that offloads code from the Internet, installs, and runs it.
In the MAPCloud system [24] an application request is modeled as a workflow
of tasks. The offload target (which in this case acts as a broker) locates other
offload targets that can perform the tasks and returns a service plan with the
URL of each offloaded workflow task. To the best of our knowledge, work on
cyber-foraging has not focused on on-the-fly assembly of offloaded computation
using provisioning tools.

Provisioning tools are commonly used in enterprises to manage the configu-
ration of real or virtual machines [21]. Managing the configuration of different
components of a system used to require different tools for different types of com-
ponents, but more recent tools are able to configure a complete environment on
top of a specific operating system [8]. Configuration management tools, for ex-
ample, allow system administrators to easily create copies of an existing machine
or of a pre-defined environment described in a configuration script [8] [16]. Re-
search on system administration and configuration management has focused on
issues such as formal analysis of system administration [4], simplifying the config-
uration process and tools [27], and deploying system configurations onto virtual
machines [29]. Tools such as Vagrant [20] simplify the creation and management
of VMs by integrating configuration management tools that can automatically
provision a newly created VM. Research on opportunistically provisioning VMs
focuses on reducing costs or access times by optimizing the use of resources when
multiple VMs can execute concurrently [3] [23] [30]. However, most of this work
assumes that the environment for these provisioning tools consists of enterprise
networks with good connectivity and access to resources.

3 Cloudlet-Based Cyber-foraging

Cloudlets are discoverable, generic, stateless servers located in single-hop prox-
imity of mobile devices, that can operate in disconnected mode and are virtual-
machine (VM) based to promote flexibility, mobility, scalability, and elasticity
[26]. In the cloudlet architecture we have developed, applications are partitioned



4 Sebastián Echeverŕıa et al.

at design-time into two parts: a thin client called a Cloudlet-Ready App that ex-
ecutes on a mobile device, and a computation-intensive Application Server that
runs inside a VM on the cloudlet server [28]. The Application Server provides a
service to the Cloudlet-Ready App. The VM that hosts this service is called a
Service VM [14].

Cloudlet provisioning is the process of setting up a Service VM on a cloudlet
so that a mobile device can have access to the service it provides. An effective pro-
visioning technique has to be able to work efficiently in the resource-constrained
environments in which cloudlets may operate. We define the following quality
attributes [1] to measure the usefulness of a cloudlet provisioning technique for
resource-constrained environments:

– Energy efficiency: Refers to how much energy of a mobile device is con-
sumed when provisioning a cloudlet. Due to the limited capacity of the bat-
teries used by mobile devices, reducing the amount of energy consumed dur-
ing provisioning is a priority. Given that wireless transmission accounts for
a large part of the battery drain on this type of devices [17], battery life on
the mobile device can be extended by decreasing the amount of information
sent through the network radio for provisioning a cloudlet.

– Application-ready time: We define this as the time between start of
cloudlet provisioning and acknowledgment of the Application Server that it
has started. Smaller times provide a better user experience because it takes
less time to use a mobile Cloudlet-Ready App. In addition, due to the dy-
namic context and urgency of some resource-constrained environments users
may not have the luxury of waiting for long periods of time before being able
to use a mobile application. Provisioning techniques need to account for this
and should strive to reduce application-ready time.

– Automation of provisioning: Refers to how much manual work is required
to provision new Service VMs on a cloudlet. Cloudlets at the edge are not on
dedicated data centers, can be mobile, and are in an environment where there
may not be skilled system administrators, or even time for administrators
to monitor them. Cloudlets have to be able to function with as little human
administration as possible, and therefore provisioning techniques have to be
as self-sufficient as possible.

– Flexibility: Refers to how adaptable the provisioning mechanism is to
changes in the configuration of the cloudlet. At the edge, cloudlets may need
to be quickly replaced, and mobile devices will need to connect to different
cloudlets depending on their availability. Provisioning techniques should be
able to work correctly with different cloudlets.

4 On-Demand VM Provisioning

On-Demand VM Provisioning uses a provisioning script at runtime to set up
a Service VM. The mobile device sends the provisioning script to the cloudlet
when the user executes a Cloudlet-Ready App that needs access to the service.



On-Demand VM Provisioning 5

The cloudlet executes the script inside a clean VM (a Baseline VM ) and uses
a provisioning tool to create a Service VM that has all the components that it
needs to provide the service.

The environment for which provisioning tools are designed has some substan-
tial differences with the resource-constrained environments in which cloudlets
may operate. Part of the goal of our prototype is to be able to find ways to
overcome these differences. In particular:

– Provisioning tools deployed on an enterprise network rely on an infrastruc-
ture of servers to achieve their goals. Central servers are commonly used
to maintain common configurations that are deployed on nodes. There is
usually connectivity to remote Internet servers or to internal repositories of
components. Cloudlets, on the other hand, are expected to work on very
small networks, usually composed of the cloudlet and a mobile device only,
with no permanent infrastructure (cloudlets can move around and connect
to different devices). They have very limited connectivity to the Internet or
to other servers.

– On enterprise networks there is a substantial amount of manual work per-
formed by data center administrators whose job is to ensure that the network
is working properly. Cloudlets are expected to work with very limited hu-
man supervision, especially in resource-constrained environments in which
intermittent connectivity makes it difficult for continuous monitoring of their
state. Cloudlets require a more robust automated working mode because ad-
ministrators will only seldom be available to monitor the status of a cloudlet
and to manually fix issues.

– Deployment of new capabilities can be a carefully planned and orchestrated
task on enterprise networks. Cloudlets, on the other hand, have to be able to
quickly react to requirements from mobile devices and assemble services on
the cloudlet on-the-fly. Provisioning tools on cloudlet environments have to
be able to easily and automatically work with different Application Servers
that need to be set up on a cloudlet.

To design our On-Demand VM Provisioning prototype, the first step was to
find a suitable provisioning tool that would offer enough flexibility to address
the challenges mentioned above. The next step was to design the prototype to
use this tool in such a way that it it could handle the characteristics of cloudlet
environments properly.

5 Provisioning Tools

A major design decision for On-Demand VM Provisioning was to select an appro-
priate provisioning tool to set up a Service VM. We defined a set of requirements
that an existing provisioning tool should address:

– Support for Windows and Linux operating systems because these are the
operating systems used by our benchmark applications and would also enable
reuse of existing applications.



6 Sebastián Echeverŕıa et al.

– Disconnected operation mode so that it can work on a cloudlet that is on
an isolated network (i.e., does not depend on a remote service and does not
need to execute on a cloud platform).

– Stand-alone execution because Service VMs are transient and are created
and disposed of at runtime (i.e., no need for a central server to maintain
configurations for long periods of time).

– On-demand execution so that it can be executed immediately when the VM
is provisioned (as opposed to executing at some fixed interval).

– Declarative mechanism for defining the components that should be part of
a VM (i.e., defines the end state of the VM rather than the exact steps to
follow to configure the VM), to simplify the creation of provisioning scripts.

– Support for starting any type of executable after provisioning the Service
VM so that the existing Application Servers used in our benchmarks can
be used without modifications (and in general, to make it easy for existing
servers to be used without having to make major changes).

The tools that we surveyed fall in one of these categories:

– System Configuration Management Software (SCM): Tools that can install
an operating system, install dependencies, and configure them so that ser-
vices run adequately. These tools store the configurations so that they can be
reused and updated over time as required. They usually also allow adminis-
trators to manage the state of multiple machines remotely. Examples include
Puppet1, Chef2, CFEngine3, Bcfg24, SmartFrog5 and Salt6. Most of them
have a client-server design, with multiple clients installed on nodes that pull
the configuration for their host from the server to update the environment to
match the configuration. Other tools that take different approaches include
Docker7 (a Linux container engine that creates process-level containers to
provide an isolated environment) and NixOS8 (a Linux distribution that uses
a purely-functional package manager to define configurations).

– Service Orchestration Software (SO): Tools that simplify the configuration
of services, their relations, and the way they should scale. Examples include
JuJu9, which is targeted at provisioning services in the cloud and easily
integrate and scale services.

– Virtual Machine Management Software (VMM): Tools that simplify the cre-
ation, configuration, execution and maintenance of VMs. An example is Va-
grant10, a tool that creates a VM with a base VM image (box), executes

1 http://puppetlabs.com/puppet/puppet-open-source
2 http://www.getchef.com/chef/
3 http://cfengine.com/
4 http://bcfg2.org/
5 http://www.smartfrog.org
6 http://www.saltstack.com/
7 https://www.docker.com/
8 http://nixos.org/
9 https://juju.ubuntu.com/

10 http://www.vagrantup.com/



On-Demand VM Provisioning 7

predefined provisioning scripts, and launches the VM. It can integrate with
SCM tools such as Puppet and Chef.

We quickly found that most tools focus on provisioning existing machines
instead of setting up new VMs and then provisioning them. Even though several
tools matched our criteria, Puppet and Chef appeared to be the most mature.
We selected Puppet [13] because of its larger community and its slightly simpler
declaration language. The best choice would have been to use Vagrant (to set up
transient VMs) in combination with Puppet. However, because Vagrant did not
support the QEMU virtual machine manager, on which our prototype is based,
we had to discard it.

6 System Architecture

Figure 1 shows the high-level architecture of the system. The architecture of
this prototype is designed to support different provisioning techniques to set up
a Service VM on a cloudlet. The mobile device carries the files that it needs to
provision the cloudlet with the Application Server. The format and content of
these files, however, depend on the cloudlet provisioning technique being used.
The provisioning process is controlled by a generic Cloudlet Client application on
the mobile device that communicates with a Cloudlet Server application running
on the cloudlet. Upon receiving the provisioning files, the Cloudlet Server sets
up the Service VM and makes its service available to the Cloudlet-Ready App,
which can then interact with the Cloudlet-Ready Application Server (Application
Server for short) directly. Details on the common components of the architecture
shared between cloudlet provisioning techniques can be found in [14].

6.1 Main Components

In Figure 1, the components that are specific to On-Demand VM Provisioning are
the Baseline VM Repository, the Service and Dependency Repository, the Service
Provisioning Payload, the Service VM SSH Server, and Puppet. Following is a
description of these components and how they work together.

Baseline VM Repository A Baseline VM is a suspended VM that has all
the components that are considered part of a baseline configuration. A Baseline
VM can be used as a template for the provisioning of Service VMs. Baseline
VMs can be modified, updated, and maintained continuously without affecting
the provisioning process. Changes to a Baseline VM will only affect new Service
VMs that are derived from it because there is no persistent link between a Service
VM and the Baseline VM that it was created from.

In our prototype, Baseline VMs are created with the virtual machine man-
ager QEMU [2], plus the KVM kernel module. Service VMs created from Baseline
VMs are set up with User Networking [22], which isolates the VM in an internal
virtual network contained inside the QEMU process that is hosting the VM.



8 Sebastián Echeverŕıa et al.

Fig. 1. High-level architecture of the cloudlet-based cyber-foraging prototype that
implements On-Demand VM Provisioning.

Services that need to be accessed from outside the VM, such as the ones pro-
vided by the Application Server, are mapped through QEMU’s port forwarding
configuration.

Baseline VMs are stored in the Baseline VM Repository as a set of files with
the following structure:

– Disk Image file (.qcow2): Disk image file in QCOW2 format [18] used as
the virtual disk of a VM. It contains a basic OS installation plus common
libraries that will likely be used by many services. A Baseline VM will need
to have at least the following components installed or configured in its disk
image, according to our current implementation:

– SSH server: Enables the Cloudlet Server to send files and commands.
The SSH port is forwarded though QEMU so that the Cloudlet Server
can connect through SSH.

– Puppet client: Enables the execution of Puppet manifests inside the VM
as a standalone component (no master/agent setup required).

– Link to Cloudlet HTTP File Server: Enables the Service VM to download
packages stored locally on the Cloudlet (through HTTP). With User
Networking, the Service VM always uses the same virtual IP address to



On-Demand VM Provisioning 9

contact the VM host. The Baseline VM has to be configured once to be
able to reach this IP address when installing packages.

– VM State Image file (.lqs): VM state image generated by the libvirt VM
management API [15]. This image includes both the description of the VM
that was suspended, as well as the memory state of the VM.

– Baseline VM Metadata file (.jsonbmd): JSON file describing the basic fea-
tures of the Baseline VM. It has the following fields:

– osFamily (string): OS family (e.g., ”Linux”, ”Windows”).
– os (string): Name of the specific OS or distribution (e.g., ”Windows 7”,

”Ubuntu”).
– osVersion (string): Version of the OS (e.g., ”SP1”, ”8.1”, ”12.10”).
– osISA (string): Instruction set of the compiled OS in the disk image (e.g.,

”x86-32”, ”x86-64”).

A Baseline VM Repository contains a folder for each Baseline VM that it
stores. The name of the folder is a unique ID that is used to identify the Baseline
VM. Each folder has the three files described above.

Service Provisioning Payload The Service Provisioning Payload files de-
scribe how to provision a Service VM on a cloudlet. They are stored on the
mobile device and are transferred to the cloudlet when the client needs access
to the service provided by that Service VM. The payload is composed of two
metadata files and a provisioning script:

– Baseline VM Metadata file (.jsonbmd): JSON file that describes the fea-
tures that are required of a Baseline VM to serve as a template to create
an appropriate Service VM. The format is the same as the Baseline VM
Metadata file described above, although some fields can be omitted if there
is no requirement related to them.

– Service Metadata file (.jsonsvm): JSON file that describes the attributes of
a service to be hosted on the Service VM that will be provisioned. These
attributes include:

– serviceId (string): Unique identifier of the Service that will be provided
by the Service VM.

– servicePort (integer): Port that the Application Server will be listening
on to provide its service inside the Service VM.

– Puppet Manifest (text file): Script detailing what has to be provisioned to
set up the Service VM. This includes the Application Server code to install,
dependencies for that server, and required libraries. It is written in the de-
fault language used for Puppet manifests (http://docs.puppetlabs.com/
learning/manifests.html).

Service and Dependency Repository A cloudlet host has a repository of
packages that are available to a Service VM to be able to provision itself. There
are two types of packages:

– Service Packages: Application Server files that provide the actual services,
packaged in an easy-to-install way that can be handled by Puppet.



10 Sebastián Echeverŕıa et al.

– Dependency Packages: Components or libraries that can be used by different
services.

In the prototype, all these packages are made available via HTTP from the
Cloudlet Server because it can serve static files via HTTP. The Ubuntu packages
are available in an Apt-Get [7] repository installed inside the Cloudlet Host. The
Windows components are stored as Windows Installer Packages (MSI) [19] inside
the same Cloudlet Host.

6.2 Provisioning Sequence

The provisioning process is shown in Figure 2 and follows these steps:

1. The Cloudlet Client sends the Baseline VM Metadata file (part of the Service
Provisioning Payload) to the Cloudlet Server to look for a matching Baseline
VM.

2. The Cloudlet Server checks if the cloudlet has a Baseline VM that matches
the requirements given in the Baseline VM Metadata file.

3. If it does, the Cloudlet Client sends the Service Metadata file and the Pro-
visioning Script (part of the Service Provisioning Payload) to the Cloudlet
Server.

4. The Cloudlet Server creates a copy of the Baseline VM, sets it up using the
Service Metadata and starts it as a new Service VM through QEMU.

5. The Cloudlet Server transfers the Provisioning Script (Puppet Manifest) via
SSH to the running Service VM instance and sends an SSH command for
Puppet to execute the script.

6. Puppet, inside the Service VM Instance, executes the Provisioning Script.
7. Puppet obtains the files for the service and its dependencies from the

Cloudlet Host using HTTP download via the Cloudlet Server.
8. Puppet installs the service and its dependencies, starts the Application

Server that provides the service, and notifies the Cloudlet Server that the
installation is complete.

9. The Cloudlet Server sends the IP address and port that will be used to
connect to the Service VM back to the Cloudlet Client.

10. The Cloudlet Client starts up the Cloudlet-Ready App that will access the
service.

11. The Cloudlet-Ready App communicates with the Application Server through
the forwarded port set up by the QEMU process hosting the Service VM.

7 System Evaluation

This section focuses on the evaluation of the On-Demand VM Provisioning Sys-
tem against the requirements of cyber-foraging in resource-constrained environ-
ments. It starts by describing previous cloudlet provisioning mechanisms that
we have developed as part of our research. It then presents the analysis of the
architecture of the prototype as well as some experimental results.



On-Demand VM Provisioning 11

Fig. 2. Sequence diagram for cloudlet provisioning and Cloudlet-Ready App execution
using On-Demand VM Provisioning.



12 Sebastián Echeverŕıa et al.

7.1 Previous Cloudlet Provisioning Mechanisms

We implemented several cloudlet provisioning mechanisms as part of our re-
search [14]. Part of the motivation to design and implement the On-Demand
VM Provisioning approach was to try to overcome some of the shortcomings of
these methods.

VM Synthesis works by creating an overlay, which is the binary difference
between a Base VM and a Service VM (which is created by installing an Ap-
plication Server on the Base VM and calculating the difference between the two
image files). The overlay is carried by the mobile device, and transferred to a
cloudlet to reassemble the full Service VM if it has the same Base VM. The main
advantage of VM Synthesis is that it ensures the proper execution of the Appli-
cation Server because it packages the full environment that the server needs to
run on. However, the overlay tends to be significant in size, and transferring it
to the cloudlet consumes a large amount of energy from the mobile device. Also,
VM Synthesis is not very flexible in its deployment and maintenance because
the exact Base VM has to exist in the cloudlet to reassemble the Service VM
(no security updates can be added to the base VM, for example).

Cached VM works by pre-provisioning a cloudlet with full Service VM im-
ages. Each VM image file has a unique service identifier. At runtime, the mobile
device instructs the cloudlet to start the VM that corresponds to the service
for the launched client app. This method requires almost no communication be-
tween the mobile device and the cloudlet, other than sending the identifier of the
required Service VM. However, Service VMs have to be provisioned in advance
on any cloudlet that the mobile device may connect to.

In Cloudlet Push, the cloudlet is not only pre-provisioned with Service VM
images, but also the corresponding mobile client apps. At runtime, the mobile
device queries the cloudlet for available capabilities, similar to accessing an app
store. The cloudlet pushes the selected client app to the mobile device and then
starts the corresponding Service VM. This has the same advantages and disad-
vantages as the previous method, plus the issue of ensuring that the apps stored
in the cloudlet are compatible with the device that is requesting them.

7.2 Qualitative Evaluation: Analysis of the Architecture

The following is an analysis of how On-Demand VM Provisioning addresses the
cloudlet requirements we defined in Section 3, in comparison with the other
cloudlet provisioning mechanisms described above.

– Energy efficiency: On-Demand VM Provisioning needs to transfer only a
small script and some metadata to provision a Service VM on a cloudlet.
VM Synthesis has to send much more data during the provisioning process,
including (in binary difference format) the Application Server itself and its
dependencies, and the memory state of the VM. On the other hand, Cached
VM and Cloudlet Push do not require to send any data at all (other than an
identifier) during provisioning, mainly because they assume that the cloudlet



On-Demand VM Provisioning 13

has already been provisioned. Of the techniques that actually provision a
cloudlet, On-Demand VM Provisioning transfers the least amount of data.

– Application-ready time: Because the VM has to be provisioned before it
can provide a service, the time that it takes to be ready will vary depend-
ing on the time that Puppet takes to configure the system. For a service
with multiple dependencies, each of these would have to be transferred and
installed in the VM before it is ready to be used by the mobile client. In
comparison, the application-ready time for VM Synthesis depends on the
time it will take to transfer the payload and set up the Service VM, which
could be less than the time that On-Demand VM Provisioning may take for
complex services with many dependencies. Cached VM and Cloudlet Push
have almost no application-ready time, since they assume that the Service
VM is already provisioned. Cached VM could be used to cache VMs assem-
bled by On-Demand VM Provisioning to decrease the application-ready time
for new requests for the same service.

– Automation of provisioning: Provisioning a Service VM through On-
Demand VM Provisioning is done with no user intervention on the cloudlet
side. However, it does need the cloudlet to be have Baseline VMs and a
repository of services and dependencies already set up. VM Synthesis, in
comparison, needs only the correct Base VMs to be set up before the pro-
visioning process and the provisioning process itself is also automated. On
the other hand, Cached VM and Cloudlet Push need manual provisioning
of some sort to work on their own because they assume that the cloudlet
administrator will have already provisioned the necessary Service VMs.

– Flexibility: Because a provisioning script only defines the basic features of
a Baseline VM and the dependencies that are needed, these components can
be maintained and updated without any negative effects on the On-Demand
VM Provisioning process. Baseline VMs can be safely upgraded and patched,
and new versions of libraries can be made available on the cloudlet. VM Syn-
thesis, in comparison, needs the exact Base VM used to create an overlay,
which cannot be modified without having to re-create all overlays generated
from it. There is a trade-off, however, between the flexibility of On-Demand
VM Provisioning and the probability of failure due to a missing dependency.
With On-Demand VM Provisioning, if a dependency or library that is re-
quired by the service is not available on the cloudlet, it will not be possible
to set up a Service VM. By allowing more flexibility, there are more ways
for the process to fail in comparison to other cloudlet provisioning mecha-
nisms (VM Synthesis, for example, only needs the Base VM). A potential
way of overcoming this issue is to allow the cloudlet to obtain dependencies
from the cloud when there is Internet connectivity available. The cloudlet
could asynchronously download more dependencies to increase the chances
of having all the dependencies needed for a particular service.



14 Sebastián Echeverŕıa et al.

7.3 Quantitative Evaluation: Experiments and Results

We conducted a set of experiments to compare On-Demand VM Provisioning
against our previous provisioning techniques. For the experiments we used three
applications that were partitioned into Cloudlet-Ready Apps and Application
Servers: face recognition (FACE), speech recognition (SPEECH), and object
recognition (OBJECT). For details on the complete experiments, see [14].

In the tables below, application-ready time is measured as the time in seconds
from the start of the provisioning process until the cloudlet responds that it is
ready. Total client energy is measured as the total energy consumed on the mobile
device during application-ready time. Client communication energy is calculated
by subtracting the energy consumed by the phone while idle (measured as 1 J/s
in our experiments) from the total client energy consumed (to approximate the
actual energy spent by On-Demand VM Provisioning, discarding other energy
consumers such as the screen). This last value was indirectly calculated and not
measured because the power monitor measures total energy consumption, and
does not distinguish between energy consumed for communication from energy
consumed by other parts of the mobile device.

Table 1. Payload size, application-ready times and consumed client energy for On-
Demand VM Provisioning (averages).

Applications
Payload
Size (KB)

Application-
Ready Time (s)

Total Client
Energy (J)

Client Comm.
Energy (J)

FACE (Windows) 0.68 112.7 129.1 16.4
OBJECT (Linux) 1.23 211.0 244.0 33
SPEECH (Win.) 1.32 237.6 269.2 31.6
SPEECH (Linux) 0.76 94.1 109.3 15.2

Application-ready time is very variable for On-Demand VM Provisioning, as
can be seen in Table 1. The Windows version of SPEECH has a much longer
application-ready time than its Linux counterpart because in Windows the com-
ponent installation processes have more steps. The OBJECT test app is the
one with the highest number of dependencies, increasing its application-ready
time. The client energy consumed is directly proportional to the application-
ready time. The approximate energy consumed by the transfer of messages and
the payload is proportional to the payload size (the scripts and and metadata
transferred).

Table 2 shows that the application-ready times are lower for Cached VM and
Cloudlet Push in comparison to On-Demand VM Provisioning. This is expected
because these two methods have the Service VM already provisioned on the
cloudlet. VM Synthesis shows lower application-ready times in comparison to
On-Demand VM Provisioning, for the most part. This most likely has to do with
the amount of dependencies required by the benchmark applications, which in
turn make On-Demand VM Provisioning take longer to assemble the Service



On-Demand VM Provisioning 15

Table 2. Application-ready times of other cloudlet provisioning mechanisms as a per-
centage of the times for On-Demand VM provisioning (averages)

Application-Ready Time

Applications
VM

Synthesis
Cached
VM

Cloudlet
Push

FACE (Windows) 47% 7% 7%
OBJECT (Linux) 83% 5% 6%

SPEECH (Windows) 36% 5% 5%
SPEECH (Linux) 105% 13% 14%

VM. On-Demand VM Provisioning is a bit faster than VM Synthesis in the case
of the SPEECH test application in Linux because this is the benchmark server
with the least dependencies.

Table 3. Client energy consumed by communications by other cloudlet provisioning
mechanisms as a percentage of the energy consumed by communications by On-Demand
VM Provisioning (averages)

Client Energy

Applications
VM

Synthesis
Cached
VM

Cloudlet
Push

FACE (Windows) 27% 13% 36%
OBJECT (Linux) 478% 6% 16%

SPEECH (Windows) 284% 8% 17%
SPEECH (Linux) 484% 18% 36%

Table 3 shows that, as expected, the client energy consumed is lower for
Cached VM because it has to transfer no payload. On-Demand VM Provisioning
consumes more energy than Cloudlet Push, which has to transfer a packaged app
from the cloudlet server to the mobile device. Even though the app is bigger than
the payload of On-Demand VM Provisioning, the energy consumed on the mobile
device is lower because it is only receiving data and not sending data [10]. On-
Demand VM Provisioning consumes much less energy for communications than
VM Synthesis in most cases, due to the large amount of data being transferred
by this cloudlet provisioning mechanism.

8 Conclusions and Future Work

On-Demand VM Provisioning is a valid and effective alternative to previous
cloudlet provisioning mechanisms. It leverages the flexibility and automation
capabilities of a configuration management tool such as Puppet to address the



16 Sebastián Echeverŕıa et al.

issues of energy efficiency, application-ready time, automation and robustness
when working in resource-constrained edge environments.

This technique does have some drawbacks, mainly related to the application-
ready time and robustness for complex application with multiple dependencies.
If the scope and type of applications using this system is clearly defined, however,
these problems may not be a major issue.

A hybrid mechanism could be used to leverage the advantages of the dif-
ferent cloudlet provisioning techniques. A cloudlet could be set up to have all
these cloudlet provisioning mechanisms available, and the system could select the
one that is the most appropriate based on the current context (e.g., remaining
battery, available bandwidth, cloudlet connectivity). For example, if the mobile
device has very little battery power remaining, and the cloudlet is temporarily
connected to the Internet, On-Demand VM Provisioning could be selected to
provision the cloudlet because it would require very little energy consumption
from the device, and any missing dependencies could be downloaded from the
Internet.

Another similar approach would be to combine the different provisioning
mechanisms by attempting to use each of them sequentially, falling back on the
next one if the previous one fails to provision the cloudlet. For example, Cached
VM could be tried first, but it would only work if the cloudlet already has the
Service VM in its cache. If this is not the case, On-Demand VM Provisioning
could be used next, and if it does not work out due to missing dependencies,
VM Synthesis could be attempted as a last resort.

In any case, keeping a cache of assembled Service VMs is a good idea to
avoid sending data for a service that is already available. Once a Service VM is
provisioned by On-Demand VM Provisioning, it can be stored on the cloudlet’s
internal Service VM cache. The next time a mobile device requests the service,
the Cloudlet Server can first check if the Service VM is already cached, and
only perform On-Demand VM Provisioning if it is not. It may be necessary to
re-assemble a Service VM for a particular service if a new version of the service
is available, or new dependencies are used by it. Information such as service
version could be added to the service metadata file to force the re-assembly of
an outdated Service VM through On-Demand VM Provisioning.

Future work could also focus on defining which provisioning mechanism is
more appropriate for an application based on its characteristics. Applications
that have very few dependencies can benefit considerably from On-Demand VM
Provisioning, and therefore this type of application could be packaged to use this
technique. Complex or dependency-heavy applications may be better handled
by other techniques, such as VM Synthesis. A cloudlet could then choose which
provisioning mechanism to use based on the characteristics of the application,
or on a preference explicitly provided by the application.



On-Demand VM Provisioning 17

Acknowledgements

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon Univer-
sity for the operation of the Software Engineering Institute, a federally funded
research and development center. This material has been approved for public
release and unlimited distribution (DM-0001547).

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd ed.
Addison-Wesley Professional (2012)

2. QEMU: Open Source Processor Emulator, http://wiki.qemu.org/Main_Page
3. Bjorkqvist, M., Chen, L., Binder, W.: Opportunistic service provisioning in the

cloud. In: 2012 IEEE 5th International Conference on Cloud Computing (CLOUD),
pp. 237–244. IEEE Computer Society, Washington, DC, USA (2012)

4. Burgess, M.: On the theory of system administration. Science of Computer Pro-
gramming 49, 1, 1–46 (2003)

5. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: Clonecloud: Elastic exe-
cution between mobile device and cloud. In: Proceedings of the Sixth Conference
on Computer Systems, pp. 301–314. ACM, New York, NY, USA (2011)

6. Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R.,
Bahl, P.: Maui: Making smartphones last longer with code offload. In: Proceedings
of the 8th International Conference on Mobile Systems, Applications, and Services,
pp. 49–62. ACM, New York, NY, USA (2010)

7. Apt-Get, https://help.ubuntu.com/12.04/serverguide/apt-get.html
8. Dolstra, E., Bravenboer, M., Visser, E.: Service configuration management. In:

Proceedings of the 12th International Workshop on Software Configuration Man-
agement, pp. 83–98. ACM, New York, NY, USA (2005)

9. Goyal, S.: A collective approach to harness idle resources of end nodes. PhD thesis,
University of Utah (2011)

10. Halperin, D., Greenstein, B., Sheth, A., Wetherall, D.: Demystifying 802.11n power
consumption. In: Proceedings of the 2010 International Conference on Power Aware
Computing and Systems, pp. 1–. USENIX Association, Berkeley, CA, USA (2010)

11. Iyer, A., Roopa, T.: Extending android application programming framework for
seamless cloud integration. In: Mobile Services (MS), 2012 IEEE First International
Conference on, pp. 96–104

12. Jarabek, C., Barrera, D., Aycock, J.: Thinav: Truly lightweight mobile cloud-based
anti-malware. In: Proceedings of the 28th Annual Computer Security Applications
Conference, pp. 209–218. ACM, New York, NY, USA (2012)

13. Puppet Open Source, http://puppetlabs.com/puppet/puppet-open-source
14. Lewis, G. A., Echeverŕıa, S., Simanta, S., Bradshaw, B., Root, J.: Cloudlet-based

cyber-foraging for mobile systems in resource-constrained edge environments. In:
Companion Proceedings of the 36th International Conference on Software Engi-
neering, pp. 412–415. ACM, New York, NY, USA (2014)

15. Snapshot XML Format, http://libvirt.org/formatsnapshot.html
16. Lueninghoener, C.: Getting started with configuration management. ;login: 36, 2,

12–17 (Apr 2011)



18 Sebastián Echeverŕıa et al.

17. Manweiler, J., Roy Choudhury, R.: Avoiding the rush hours: Wifi energy manage-
ment via traffic isolation. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, pp. 253–266. ACM, New York, NY,
USA (2011)

18. The QCOW2 Image Format, https://people.gnome.org/~markmc/

qcow-image-format.html

19. Microsoft TechNet - Windows Installer Package, http://technet.microsoft.com/
en-us/library/cc978328.aspx

20. Palat, J.: Introducing vagrant. Linux J. 2012, 220
21. Pandey, S.: Investigating community, reliability and usability of cfengine, chef and

puppet. Master’s thesis, University of Oslo, Department of Informatics (2012)
22. QEMU: Open Source Processor Emulator - Documentation/Networking, http:

//wiki.qemu.org/Documentation/Networking

23. Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., Sharma, N.: Towards
autonomic workload provisioning for enterprise grids and clouds. In: Grid Comput-
ing, 2009 10th IEEE/ACM International Conference on, pp. 50–57. IEEE Com-
puter Society, Washington, DC, USA (Oct 2009)

24. Rahimi, M. R., Venkatasubramanian, N., Mehrotra, S., Vasilakos, A. V.: Map-
cloud: Mobile applications on an elastic and scalable 2-tier cloud architecture. In:
Proceedings of the 2012 IEEE/ACM Fifth International Conference on Utility and
Cloud Computing, pp. 83–90. IEEE Computer Society, Washington, DC, USA
(2012)

25. Rahman, J.: Investigating configuration management tools usage in large infras-
tructure. Master’s thesis, University of Oslo, Department of Informatics (2012)

26. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for vm-based
cloudlets in mobile computing. Pervasive Computing, IEEE 8, 4, 14–23 (Oct 2009)

27. Sekiguchi, A., Shimada, K., Wada, Y., Ooba, A., Yoshimi, R., Matsumoto, A.:
Configuration management technology using tree structures of ict systems. In:
Proceedings of the 15th Communications and Networking Simulation Symposium,
pp. 4:1–4:7. Society for Computer Simulation International, San Diego, CA, USA
(2012)

28. Simanta, S., Lewis, G. A., Morris, E., Ha, K., Satyanarayanan, M.: A reference
architecture for mobile code offload in hostile environments. In: Proceedings of the
Joint Working IEEE/IFIP Conference Software Architecture (WICSA) and Euro-
pean Conference on Software Architecture (ECSA), pp. 282–286. IEEE Computer
Society, Washington, DC, USA (2012)

29. Vallee, G., Naughton, T., Scott, S. L.: System management software for virtual
environments. In: Proceedings of the 4th International Conference on Computing
Frontiers, pp. 153–160. ACM, New York, NY, USA (2007)

30. Wang, K., Rao, J., Xu, C.-Z.: Rethink the virtual machine template. In: Pro-
ceedings of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, pp. 39–50. ACM, New York, NY, USA (2011)


