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Abstract. Handheld mobile technology is reaching first responders and soldiers 
in the field to aid in various tasks such as speech and image recognition, natural 
language processing, decision making, and mission planning. However, these 
applications are computation-intensive and we must consider that 1) mobile 
devices offer less computational power than a conventional desktop or server 
computer, 2) computation-intensive tasks take a heavy toll on battery power, 
and 3) networks in hostile environments such as those experienced by first 
responders and soldiers in the field are often unreliable and bandwidth is 
limited and inconsistent. While there has been considerable research in code 
offload to the cloud to enhance computation and battery life, most of this work 
assumes reliable connectivity between the mobile device and the cloud—an 
invalid assumption in hostile environments. This paper presents a reference 
architecture for mobile devices that exploits cloudlets—VM-based code offload 
elements that are in single-hop proximity to the mobile devices that they serve. 
Two implementations of this reference architecture are presented, along with an 
analysis of architecture tradeoffs. 

Keywords: reference architecture; mobile architecture; mobile systems; code 
offload, virtual machines; cloud computing  

1   Introduction 

The number of apps and mobile devices created specifically for use in hostile 
environments, such as those experienced by first responders operating in crisis 
situations and military personnel, continues to grow [1][2][3]. First responders and 
soldiers can use handheld devices to help with tasks such as speech and image 
recognition, natural language processing, decision making and mission planning. 



 

However, several obstacles impede achieving the needed capabilities. First, mobile 
devices offer less computational power than conventional desktop or server computers, 
and are therefore not an ideal computation platform for tasks such as natural language 
processing and complex decision making. Second, computation-intensive tasks, such 
as image recognition or even global positioning systems (GPS), take a heavy toll on 
battery power. Third, networks in hostile environments are often unreliable and 
bandwidth is limited and inconsistent [4].  

To overcome some of these challenges, cyber-foraging is employed to leverage 
external resources to augment the capabilities of resource-limited mobile devices 
[5][6][7][8][9][10][11][12][13]. However, many cyber-foraging strategies rely on the 
conventional internet or on environments that tightly couple handheld applications and 
servers on which code is offloaded (see Section 6). Cyber-foraging therefore addresses 
the challenges of conserving battery power and limited computing power, but does not 
address the challenges of unreliable networks and dynamic environments. 

This report presents a strategy to overcome the challenges of cyber-foraging for 
mobile platforms in hostile environments by using cloudlets — discoverable, localized, 
stateless servers running one or more virtual machines (VMs) on which mobile devices 
can offload expensive computation. Cloudlets enhance processing capacity and 
conserve battery power, and simultaneously provide ease of deployment in the field. 

2   Cloudlets as Intermediate Offload Elements  

Code offload from mobile devices to cloud environments is the topic of much 
recent research [14][15][16][17][18][19][20]. This is also an approach used 
commercially by applications such as Siri for voice recognition [21]. However, an 
underlying assumption in these approaches is connectivity to the cloud, which is not 
always available or reliable in hostile environments. 

A high-level architecture for code offload in hostile environments is proposed in 
[22] and presented in Figure 1. This architecture inserts an intermediate layer between 
the central core (i.e., enterprise cloud) and the mobile devices. At the heart of this 
architecture is a large centralized core that could be implemented as one of Amazon’s 
data centers or a private enterprise cloud. At the edges of this architecture are offload 
elements for mobile devices. These elements, or cloudlets, are dispersed and located 
close to the mobile devices they serve [23]. This architecture decreases latency by 
using a single-hop network and potentially lowers battery consumption by using WiFi 
or short-range radio instead of broadband wireless which typically consumes more 
energy [24][25]. 

A key attribute of this architecture is that the offload elements are stateless. A 
mobile device does not need to communicate with the core during an offload 
operation; it only needs to communicate with its closest offload element. 
Communication between the offload element and the core is only needed during setup 
and provisioning. Once an offload element is provisioned, it can work in disconnected 
mode. Adding or replacing an offload element involves little setup or configuration 
effort.  

One approach to offload is VM synthesis [23][26]. In this approach, an application 
overlay is offloaded from the mobile device to a cloudlet. An application overlay 
represents the difference between a base VM with only an operating system installed 



 

and the same VM with the application installed. In effect, the mobile device becomes 
the vector by which the needed application is deployed to the field. This approach 
takes advantage of properties of VMs that reduce hardware dependencies—the same 
VMs can operate on several hardware platforms, and a single hardware platform can 
support multiple VMs—to provide flexibility in highly volatile environments where it 
is difficult to assure the right hardware or OS platform for cyber-foraging. 
 

 

 
Fig. 1. Three-tier architecture for code offload 

An application overlay is created once per application, as described in Figure 2. 
The Base VM is a VM disk image file that is obtained from the Central Core and saved 
to a cloudlet that runs a VM manager compatible with the Base VM. The VM manager 
starts the Base VM and the application is installed. After installation, the VM is shut 
down. A copy of the modified Base VM Disk Image is saved as the Complete VM 
Disk Image. The Application Overlay is calculated as the binary diff (VCDIFF 
rfc3284) between the Complete VM Disk Image and the Base VM Disk Image. The 
Base VM is then deployed to any platform that will serve as a cloudlet. The cloudlet 
may support multiple VMs, thereby reducing hardware dependencies on the offload 
element, and between the offload element and mobile device. A mobile device carrying 
application overlays will be able to execute these applications on any cloudlet that has 
the corresponding Base VM. 

VM synthesis is particularly useful in hostile environments characterized by 
unreliable networks, loss of cyber foraging platforms, and a need for rapid deployment. 
For example, imagine a scenario where a first responder must execute a computation-



 

intensive app configured to work with cloudlets. At runtime, the app discovers a 
nearby cloudlet located in a rescue camp and offloads the computation-intensive 
portion of code to it. However, due to a natural disaster, loss of network connectivity, 
or exhaustion of energy sources on the cloudlet, the mobile app is disconnected from 
the cloudlet. The mobile app can locate a different cloudlet and have the app running in 
a short time, with no need for any configuration on the app or the cloudlet. This 
runtime flexibility enables the use of opportunistically available resources, replacement 
of lost cyber-foraging resources, and dynamic customization of newly-acquired cyber-
foraging resources. 

The following sections present the reference architecture for code offload in hostile 
environments and details of two prototype implementations. 

3   Reference Architecture  

Hostile environments are characterized by uncertainty in available resources such 
as computational capability and bandwidth. In addition, many applications that are 
useful in these environments are computation-intensive; these include face recognition, 
natural-language processing, route calculation, and text recognition, all of which 
require some form of input from sensors on the device. Soldiers and first responders 
executing missions are often away from their bases for many hours and cannot afford 
to carry many extra batteries. Therefore, a solution for code offload in hostile 
environments must consider 1) native apps that exploit device sensors, 2) code offload 
elements that can be quickly configured and deployed, and 3) battery consumption on 
the mobile device. 

Figure 3 presents a reference architecture for mobile devices that exploit cloudlets 
for code offload. The major components of this architecture are the Cloudlet Host and 
the Mobile Client. 

The Cloudlet Host is a physical server that hosts 1) a discovery service that 
broadcasts the cloudlet IP address and port to allow mobile devices to find it 2) the 
Base VM Image that is used for VM synthesis 3) a Cloudlet Server that handles code 
offload in the form of application overlays, performs VM synthesis and starts guest 
VM instances with the resulting VM images, and 4) a VM Manager that serves as a 
host for all guest VM instances that contain the computation-intensive server 
component of the corresponding mobile app.  

The Mobile Client is a handheld or wearable device that hosts 1) the Cloudlet 
Client app that discovers cloudlets and uploads application overlays to the cloudlet and 
2) a set of Cloudlet-Ready Apps that operate as clients of the server code running in 
the cloudlet.  The Mobile Client stores an application overlay for each cloudlet-ready 
app that a user would conceivably want to execute and for which computation 
offloading is appropriate. Each application overlay is generated from the same Base 
VM Image that resides in the cloudlet. In an operational setting, these Base VM 
Images could be retrieved from the central core shown in Figure 1. 
To validate the feasibility of the proposed reference architecture for hostile 
environments, we constructed a prototype as described in the next section. 
 



 

4   Initial Prototype  

The initial prototype is an implementation of a face recognition application in which 
the client is an Android app and a cloudlet-based server that contains computation-
intensive code that performs face recognition. The client locates a cloudlet via a 
discovery protocol, sends the application overlay (Face Recognition Server code) to 
the cloudlet for VM synthesis and captures images and sends them to the Face 
Recognition Server on the cloudlet. This initial prototype was created based on the 
reference architecture presented in Figure 3. The prototype architecture is shown in 
Figure 4. 

4.1   Base VM Image Creation 

The Base VM Image for this prototype is a 3GB image with Microsoft XP plus the 
necessary system updates. To keep the image size small, “system restore” was turned 
off and unnecessary system components were removed using the DiskCleanup utility. 
Additional components were included in the Base VM Image to enable communication 
between the Guest VM and the Cloudlet Server. This additional complexity was one of 
the reasons for revising the initial prototype (see Section 5).  

A major difference between the prototype and the cloudlet work presented in [23] 
is the type of client involved. Satyanaranyan’s work uses a virtual network computing 
(VNC) client that acts as a remote desktop for the VM [27]. In our prototype, the Face 
Recognition Client is a rich client (native app) that interacts with a Face Recognition 
Server inside the VM. The Face Recognition Client requires the IP address and port of 
the Face Recognition server to establish a network connection. However, the Cloudlet 
Server does not directly know the IP address and port of the synthesized VM because 
the IP address is assigned by the Dynamic Host Configuration Protocol (DHCP) server 
executing in bridged mode and the VM host has no visibility into that assignment. The 
Cloudlet Client uses an HTTP request to start the cloudlet setup, and expects an HTTP 
response from the Cloudlet Server that contains the IP address and port of the Face 
Recognition Server.  

To solve this problem, a CloudletStartup Windows service (implemented in 
Python) is included in the Guest VM that performs three functions: 
1. starts the Face Recognition Server in a separate thread 
2. reads the IP address and port from the Face Recognition Server configuration and 

communicates it to the Cloudlet Server in an HTTP POST 
3. sends a periodic heartbeat to the Cloudlet Server in an HTTP POST 

After completion of these steps, the VM was shut down and the resulting image file 
was saved as the Base VM Image. 

4.2   Tools for Overlay Creation 

The overlay for the face recognition application was created by following the steps 
presented in Figure 2. The VM Manager was started using the Base VM Image, the 
Face Recognition Server was installed, and the VM shut down. The specific tools used 
to “Calculate Diff between Complete and Base VM Image” are 



 

• xdelta3: open-source binary diff tool that generates a file as the difference between 
the Base VM Disk Image and the Complete VM Disk Image [29] 

 

 
 Fig. 2. Application overlay creation process 

 
• lzma: set of public-domain libraries and tools that compress the diff file using the 

Lempel-Ziv-Markov chain data-compression algorithm [30] 
• OpenSSL: open-source SSL (Secure Sockets Layer) implementation that encrypts 

the compressed file [31] 
The resulting file is the application overlay. The Cloudlet Server uses these same 

tools in reverse order when it performs VM synthesis. 

4.3   Cloudlet Host  

The Cloudlet Host is an Ubuntu 10.10 Linux server that hosts the following sub-
components. 



 

 

  
Fig. 3. Reference architecture for cloudlet-based code offload 



 

  

 
Fig. 4. Architecture for initial prototype 



 

Kernel-based Virtual Machine (KVM) 

The virtualization infrastructure used in the prototype is KVM [32]. KVM is open-
source and has good community support. KVM runs a Guest VM for each offloaded 
application. The Guest VM for the face recognition application is Windows XP, but 
KVM supports most popular operating systems [33]. 

Cloudlet Server 

The core of the Cloudlet Server is an HTTP Server implemented using CherryPy, 
an extensible HTTP server [34]. The Cloudlet Client sends the encrypted and 
compressed overlay as an HTTP POST request. Upon receipt of the overlay, the 
overlay is decrypted and decompressed using the tools listed in Section B. VM 
synthesis is performed by using xdelta3 to apply the overlay to the Base VM Image 
and create the VM Image that contains the Face Recognition Server. The synthesized 
VM is started in bridged network mode, so that the Guest VM has a unique network-
accessible IP address [35] and waits for notification that the Guest VM has 
successfully started. The Cloudlet Server uses pyinotify—a Python file system change 
monitoring utility—to subscribe to changes in the face recognition server IP address 
and port file [36]. On startup, the Guest VM executes the CloudletStartup Windows 
service (see Section A) to communicate the IP address and port back to the Cloudlet 
Server where another thread writes the IP and port information to a file. As soon as the 
file changes, the waiting thread in Step 3 receives notification. It reads the file and 
sends a response to the Cloudlet Client that contains the IP address and port on which 
the Face Recognition Server will be listening. 

Discovery Service 

The Discovery Service is based on the Avahi implementation of Zero 
Configuration Networking (ZeroConf) [37]. Zeroconf is a local network-discovery 
protocol for creating an IP network [38]. The Discovery Service broadcasts the 
Cloudlet Server IP address and port. 

4.4   Cloudlet Client 

The Cloudlet Client is an Android app that  
1. discovers cloudlets through information broadcast by the Discovery Service 

residing in the Cloudlet Host  
2. creates a HTTP connection to the Cloudlet Server for overlay transmission and 

uploads the overlay  
3. obtains the IP address and port that the Face Recognition Server is listening on 

from the Cloudlet server  
4. communicates the IP address and port of the Face Recognition Server to the Face 

Recognition Client app using a shared local file 
5. launches the Face Recognition Client 



 

4.5   Face Recognition Client 

The Face Recognition Client is an Android app that executes in client/server mode 
with the Face Recognition Server running in the Guest VM. On launch, the Face 
Recognition Client reads the local file that contains the IP address and port of the Face 
Recognition Server and opens a TCP/IP connection to it. Images that the camera 
captures are sent to the Face Recognition Server.  

4.6   Face Recognition Server 

The Face Recognition Server is implemented in C++ using the OpenCV image 
recognition library that supports training or recognition modes [39]. When in 
recognition mode, it returns coordinates for the recognized faces plus a measure of 
confidence. 

4.7   Prototype Evaluation 

We evaluated the prototype using the previously described face recognition 
application and two additional computation-intensive applications that are 
representative of capabilities needed in hostile environments. Each application has an 
Android app (client) and a server corresponding to the computation-intensive offloaded 
code. The server-side applications are described below. 
• OBJECT: Linux C++ application based on the CMU MOPED object recognition 

libraries [40] 
• FACE: Windows XP C++ face recognition application described in Section 0 
• SPEECH: Windows XP Java application based on the CMU Sphinx-4 speech 

recognition toolkit [41]  
In addition, an overlay corresponding to a NULL application (VM simply started 

and stopped) serves as a baseline for the analysis of transmission overhead and battery 
consumption. Table 1 displays the application data. 

Table 1. Application Data for Initial Prototype 

Appl. Platform Lang. Appl. 
Size 

(MB) 

Base 
VM 
Disk 

Image 
(MB) 

Compres
sed VM 

Disk 
Image 

Overlay 
(MB) 

OBJECT Linux C++ 27.50 3546 165.32 
FACE Windows 

XP 
C++ 17.65 3073 43.55 

SPEECH Linux Java 51.04 3546 176.23 
NULL Linux N/A N/A 3546 0.12 



 

We conducted all experiments using the configuration shown in Figure 5. We 
measured energy usage with a Monsoon Solutions Power Monitor and the 
corresponding Power Tool software [42]. To ensure good experimental control, 
interactive inputs were scripted.  

 

 
 

Fig. 5. Evaluation infrastructure setup 
 
Average times for each step of the process and average energy consumption are 

shown in Figure 6. All times are measured from the client perspective and include 
HTTP Request/Response time. 

The largest amount of time is consumed by the Upload Overlay operation and 
depends on overlay size (Figure 6). VM Synthesis and Start VM almost equally 
consume the second-largest time. VM Synthesis time is smaller for FACE because the 
sum of the base VM size and overlay size is smaller. FACE is also the outlier for Start 
VM because it is the only application that runs on Windows and therefore has a longer 
boot time. Energy consumption depends largely on overlay size. Average application 
ready time (time between upload overlay and Start VM) is between 101 and 166 
seconds for the non-null applications. Given the dependence of these numbers on base 
VM image size and application overlay size, reducing the size of these files would 
reduce both application ready time and energy consumption. File size and 
implementation complexity are addressed in a revised prototype described in the next 
section. 

5   Revised Prototype  

In revising the initial prototype, our goals were first, to reduce application 
complexity and dependencies, and second, to decrease overall application ready time. 
The revised architecture shown in Figure 7 uses the same implementation of face 
recognition as for the initial prototype.  



 

 
 

Fig. 6. Evaluation infrastructure setup 

5.1   Main Changes 

To address limitations of the initial prototype, we made the following changes.  

Disk Image Format 

The default format for KVM disk images is raw images. Storage for raw images is 
allocated during creation of the image. If a 3GB image is created, the VM manager 
writes data inside the image file that is fixed in size. This results in large pre-allocated 
images.  

Another disk-image format that KVM supports is QEMU copy on write 2 (qcow2). 
The advantage of qcow2 is that storage allocation is delayed until actually needed. This 
means both size of the disk and overlay will be optimized. A disadvantage of qcow2 is 
the overhead caused by storage allocation at runtime. Reduction in the amount of time 
for overlay transmission made this tradeoff acceptable for the revised prototype.  



 

Memory Snapshot Overlay Plus Disk Image Overlay 

The initial prototype only transfers the disk image overlay. This means that the VM 
is always cold started and requires application-specific scripts to start the application 
and send connection information back to the client, as explained in Section 4. In the 
revised prototype, a memory snapshot is also created. The three files (Base VM Disk 
Image, Base Memory Snapshot, and Base Disk Snapshot) now constitute the base VM 
image. When the VM is started, as shown in Figure 8, Base Memory Snapshot and 
Base Disk Snapshot are immediately applied. The application is installed, the VM is 
suspended, and a second set of snapshots is saved. Overlays are created as the 
difference between the sets of snapshots, which accounts for a very small set of 
overlays. While the client has to send two overlays, there are fewer base VM 
dependencies. In addition, because the VM starts from a suspended state instead of 
from a stopped state, the VM Start time is faster.   

KVM in NAT Mode and Port Redirection 

One of the main complexities of the initial prototype was the KVM-to-Cloudlet- 
Host communication explained in Section 3 that allowed the mobile device to connect 
directly with the Face Recognition Server inside the VM.  

The revised prototype starts the synthesized VM in NAT (Network Address 
Translation) mode instead of bridged mode so that the Guest VM can share the same 
IP address as the Cloudlet Host. However, in NAT mode the Guest VM is not directly 
accessible from the client. When the Cloudlet Server starts the synthesized VM in 
NAT mode, it includes the port that the Guest VM should listen on as a parameter. The 
Cloudlet Server maps an externally accessible port on the Cloudlet Host to the port 
assigned to the Guest VM. The externally accessible port number is sent to the client 
and the cloudlet host redirects all communication to the Guest VM. The tradeoff is that 
NAT is restricted to certain protocols (e.g., HTTP, SMTP, FTP) and cannot be bound 
to ports numbered lower than 1024 without root privileges. 

Scalability could become an issue if the port request exceeds the number of 
available ports. However, our revision greatly simplifies deployment because the 
Windows service, Python runtime, CloudletIDPing Python script, and pyinotify are no 
longer necessary. In addition, NAT is more secure than bridged mode because the VM 
is firewalled from the outside. 

5.2   Evaluation of Revised Prototype  

We evaluated the revised prototype using the same applications as listed in Section 
4.7. Application data is shown in Table 2. Overlay size is considerably smaller, except 
for FACE, due to application characteristics such as language, use of DLLs, 
configuration files, etc.  

 



 

 
Fig. 7. Architecture for revised prototype 



 

 

 
Fig. 8. Revised application overlay creation process  

 
 



 

Table 2. Application Data for Revised Prototype 
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OBJECT 3558 17 554 94 293 
FACE 2421 15 278 71 101 

SPEECH 3558 17 554 86 257 
NULL 3558 17 554 1 3 

 
Average times for each step of the process and average energy consumption are 

shown in Figure 9. 

 

 
 

Fig. 9. Measures per application for revised prototype 
 

Although the reduction in VM Synthesis and Start VM times are considerable with 
respect to the initial prototype, Upload Overlay and Decompress Overlay times are 
higher because of the total size of the combined overlays (disk plus memory). 
Consequently, energy consumption increased because of increased overlay size. 
However, implementation, application configuration, and VM-host-guest 
communication are simplified, and Start VM time is more consistent regardless of the 
operating system running inside the VM. 



 

The bandwidth between the mobile device and the cloudlet during the experiments 
was approximately 13 Mbps, even when using 802.11n wireless. This lower-than- 
expected data rate may be caused by radio interference in the environment where the 
experiments were conducted. For the revised prototype to pay off, the efficiencies 
gained in VM Synthesis and Start VM would require supplementation with greater 
bandwidth.  

6   Related Work  

A considerable amount of work, conducted as early as 2001, relates to code offload 
from mobile devices to cloud environments [5][6][7][8][9][10][11][12][13][14][15] 
[16][17][18][19][20]. However, this work in cyber-foraging from mobile devices 
assumes that acceptable networking conditions prevail between a mobile device and its 
offload site. Although the bandwidth and latency of this connectivity varied, a 
universal assumption in previous work was that connectivity was “good enough.” To 
the best of our knowledge, our work is the first to investigate the challenges of cloud 
offload in hostile environments and to propose an architectural solution to the problem.  

One example of closely related work is MAUI [25]. MAUI is a system that enables 
the fine-grained energy-aware offload of mobile code to offload elements, with 
minimum programmer effort—code annotations indicate methods that could be 
executed remotely. However, this approach is platform-specific (Microsoft .NET) and 
therefore would limit the applications that could be offloaded.  

Another closely-related effort is CloneCloud [43]. Unlike with MAUI, applications 
do not require modification. This work also assumes connection to the cloud, but it  
could be implemented such that threads are migrated to a cloudlet instead of a cloud. 
However, supported platforms are limited (e.g., Java VM, Android Dalvik VM, 
Microsoft .NET) and deployment and hardware requirements would be difficult to 
achieve in some hostile environments.  

Other work that establishes a foundation for cyber-foraging includes 
• Goyal and Carter propose a VM-based approach in which a discoverable virtual 

machine server acts as a surrogate to run client application code [10]. This 
approach addresses security issues but requires the surrogate to be connected to 
the internet to locate and download client application code and also requires code 
to be partitioned at development time.  

• Similar to this approach is the Locusts framework that enables the discovery of 
cyber-foraging resources (surrogate peers). Peers can offload coarse-grained tasks 
to other peers as well as process offloaded tasks from other peers [44]. 
Applications must be partitioned in advance into locally executed code and 
remotely executable tasks. 

• Work proposed by Chen et al is not VM-based, but includes a mechanism for 
deciding whether to execute locally or remotely based on size of method input 
data and wireless channel conditions, and whether to interpret bytecode or compile 
native code [45]. The solution only works for Java code and applications must be 
modified to enable code offload.  

• Kemp et al. propose an approach that leverages the Ibis high-performance 
distributed computing middleware [11]. The server portion is sent from the mobile 



 

device to the surrogate at runtime but applications must be written as distributed 
applications using the Ibis programming environment and the server. 
Our work implements an instance of the cloudlet strategy presented by 

Satyanarayanan that uses a thick-client approach (native app) instead of a thin, VNC-
based client [23]. The advantage of the VNC approach is that applications would not 
require any modification because they would run completely on the server. However, 
many applications use sensors to capture information about the environment. A better 
fit for our scenario involves splitting the application into a very simple native app that 
runs on the mobile device to capture manual or sensed input and a server portion that 
runs the expensive computation. The advantage of the VM-based approach is 
simplicity of setup and deployment that relies on generic servers running pre-
configured Base VMs (cloudlets) and cloudlet-ready mobile devices loaded with 
overlays for computation-intensive applications. There is no need for special hardware 
or middleware. 

7   Conclusions and Future Work  

There is substantial consensus that cloud offload of resource-intensive application 
execution is a core technique in mobile computing. In this paper, we have described a 
reference architecture for code offload in hostile environments and presented two 
viable implementations along with architectural tradeoffs. A difficult problem exposed 
by this architecture involves rapid delivery of large application overlays to offload sites 
as well as rapid application ready time.  

Current and future work includes 1) other forms of code offload, such as demand 
paging from the cloud, that consume less energy and provide better launch times, but 
require reliable communication between cloudlets and the cloud [22] 2) rapid VM 
synthesis, and 3) extension of the discovery protocol to enable VM caching so that 
overlays do not always have to be transmitted.  
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