
How Close is Close Enough ? Understanding the Role of Cloudlets in Supporting
Display Appropriation by Mobile Users

Sarah Clinch†, Jan Harkes‡, Adrian Friday†, Nigel Davies†, Mahadev Satyanarayanan‡
†Lancaster University and ‡Carnegie Mellon University

Abstract—Transient use of displays by mobile users was
prophesied two decades ago. Today, convergence of a range
of technologies enable the realization of this vision. For
researchers in this space, one key question is where to phys-
ically locate the application for which the display has been
appropriated. The emergence of cloud and cloudlet computing
has increased the range of possible locations. In this paper
we focus on understanding the extent to which application
location impacts user experience when appropriating displays.
We describe a usage model in which public displays can be
appropriated to support spontaneous use of interactive appli-
cations, present an example architecture based on cloudlets,
and explore how application location impacts user experience.

I. INTRODUCTION

Transient public display use was prophesied in Weiser’s
seminal paper on ubiquitous computing [1]. Today, a conver-
gence of technologies enable this vision: mass-market dis-
play hardware for affordable deployment, virtual machines
(VMs) for transient customisation, smartphones for actua-
tion and access control, wireless networks for untethered
communication, and cloud offloading for resource-intensive
tasks. All the pieces are at hand to realise Weiser’s vision.

Mobile devices face a fundamental tradeoff between size,
weight and usability; the ability to briefly appropriate a
display relaxes these constraints. We envision a dynamic,
interaction-rich model whereby users walk up to a display
and temporarily use it to augment their mobile device.
User devices remain the root of identity, trust, customisation
and interaction. Likewise, privacy-sensitive information only
appears on the mobile device (e.g. as in [2]).

To illustrate this vision, consider the following scenario:
Dr. Jones is at a restaurant when she is contacted about
a pathology slide that must be interpreted while surgery is
in progress. Walking up to a large display in the lobby she
views the slide at full resolution over the Internet. Using
her smartphone for control, she zooms, pans and rotates the
slide as if at a lab microscope. Privacy-sensitive clinical
information displays on her smartphone. Dr. Jones interprets
the slide, telephones the surgeon, and returns to dinner.

One can imagine other scenarios involving transient dis-
play use, perhaps by those many miles from a home environ-
ment. Tourists might use displays to show personalised city
information, whilst a visiting expert in an industrial setting
might use displays to view detailed engineering plans.

We suggest that this vision can be realised through dy-
namic VM synthesis supported by cloudlets [3]. We focus
on a set of critical questions: Where should an application
execute for good user experience? Can it execute on a distant
cloud with high network latency? Or, is it necessary to
execute closer to the display and user? Can we quantify
the impact of latency on user experience?

We do not attempt to provide full analysis of cloudlet use
for display appropriation—issues such as appropriation over-
heads, start-up costs, trust and privacy and sharing remain
items for future work. Instead, we focus on offering insight
into the impact of application location on user experience
through detailed measurements and a user study.

II. CLOUDLETS AND DISPLAY APPROPRIATION

Our envisaged usage model has significant architectural
consequences. End-to-end latency between user action and
the appearance of causally-related frames on the display
must be tightly bounded – particularly critical for immersive
applications which may depend on demanding interaction
methods (e.g. gesture recognition).

The need for substantial computation within tight latency
bounds poses a unique challenge in the context of mobile
computing. Although a user’s mobile device is just one wire-
less hop from the display, such devices are always resource-
constrained. The alternative, leveraging cloud computing,
is constrained by the need for tightly-bound latency; user
experience may be negatively impacted by latency, jitter,
congestion and the failures that can occur with WAN access.

An alternative option uses cloudlets to reconcile these
contradictory demands. A cloudlet is a trusted, resource-rich
computer or cluster, with good connectivity, available for use
by nearby mobile devices (cf. WiFi access points today).

For display appropriation, cloudlets may be co-located
with displays; the mobile device acting as a thin client to ap-
plications executing in the cloudlet driving the display. Close
proximity of the cloudlet helps address latency requirements.

A system for display appropriation can be built using
virtual machines, c.f. dynamic VM synthesis [4], in which
a mobile user rapidly instantiates a customised server on a
nearby cloudlet. A small VM overlay is delivered from mo-
bile to cloudlet (the cloudlet already possesses the base VM).
The cloudlet applies the overlay, deriving a launch VM, and
starts execution in the precise state at which the overlay

was created. Synthesis does not mandate Internet access and
can work wherever mobiles and cloudlets are proximate.
Synthesis times of 1–2 minutes have been reported [4]; our
experiments have demonstrated times between 20–30 sec-
onds, making the approach viable for display appropriation.

This paper explores the extent to which cloudlets are
necessary to support display appropriation for interactive ap-
plications, focussing on how execution location impacts user
experience. This is an important area to address to inform
the debate as to the extent to which cloudlets will become
a key part of future pervasive computing infrastructures.

Figure 1. Geographic Distribution of Mac Cloudlets and EC2 Nodes

III. THE IMPACT OF APPLICATION LOCATION

Based on the scenario in Section I, we approximate Dr.
Jones’ interactions with the display. We measure VNC inter-
action from a mobile device via a cloudlet (VM guest) hosted
in both commercial cloud and dedicated cloudlet hardware
at varying distances from the study location (Figure 1).

A. Mobile Device & Display

To simplify automation and packet tracing we emulate the
mobile device with a Mac Mini (2 GHz Intel Core Duo,
1GB RAM) running Ubuntu 9.10 over wireless (802.11)
networking. We measure task performance with an actual
mobile device in our user study (Section V).

The display machine was a Mac Mini (2.26 GHz Intel
Core 2 Duo, 4GB RAM) running Mac OS X 10.5 and a
wired LAN. Chicken of the VNC, an open-source VNC
client, was used to connect to the cloud/let VM.

B. Application Host Environments

We deployed 7 servers: 3 physical cloudlet machines and
4 cloud VM instances. The cloudlets were placed within i)
the same subnet, ii) central Europe and iii) Eastern USA (see
Figure 1). Each cloudlet (a Mac Mini: 1.83GHz Intel Core
Duo, 2GB RAM) ran Mac OS X 10.4 and VirtualBox 3.0.12
with a Ubuntu 9.10 guest VM (allocated 1 CPU, 395MB
RAM and 8GB disk). The VM ran the Vino VNC server and
Python 2.6 ; network was bridged to the host’s Ethernet.

The cloud instances ran on the Amazon Elastic Com-
pute Cloud (EC21) with 1 Compute Unit (32-bit Ubuntu

1http://aws.amazon.com/ec2/, accessed 25th January 2012.

9.10 Server, 1.7GB RAM, 160GB storage). Instances ran
vnc4server and Python 2.6—we observed no significant
performance difference between vnc4server and Vino.

C. Measurement Methodology

Figure 2. Benchmarking Architecture

Figure 2 depicts our experiment. The ‘mobile device’
sends pairs of VNC key events to the cloud/let VM; this
triggers a screen update which is then received by the display
machine over VNC. We measure from the first VNC key
down event to reception of the screen update. We assume a
delay between the screen update arriving and screen refresh,
but this will be uniform across experimental conditions (the
same display, OS and VNC client are used throughout).

We use packet traces (tcpdump) to log protocol interac-
tions. The display machine’s Ethernet is mirrored to allow
capture with a common clock. We also packet capture on
all the nodes to measure application processing latency.
System clocks are synchronised using NTP. The resulting
measures give us a simple aggregate for typical application
performance including VM, OS, and IP stack latency.

IV. RESULTS FOR MAC CLOUDLETS

We took measurements from 18th Nov. to 6th Dec. 2010,
1am–11pm in batches of 15, ~1/min, in a UK, EU, USA
rotation. Our dataset contains 6,011 measurements (~2,000
per location) [Table 1/Figure 3].

The median update time (reflecting typical delays that
could be expected by users) are 60ms, 92ms and 171ms (UK,
EU, US respectively) [Table 1]. Distributions are tight to
the median (IQR 31ms), but significant outliers due to TCP
retransmissions skew the mean. Removing measurements
impacted by retransmissions drops the maximum update
time by 15–24 seconds and reduces the SD to 1

10

th of their
previous values. Neither day nor time is significant.

Using linear regression (retransmissions excluded) we
reject the null hypothesis (H0: no effect of location on screen

Site Min 1Q Median Mean 3Q Max SD SE n
Including TCP retries (latency with retries excluded shown in parentheses)
us 122 (122) 157 (155) 171 (168) 345 (186) 188 (183) 23680 (1482) 897.65 (99.03) 19.92 (2.35) 2030 (1770)
eu 40 (40) 77 (74) 92 (88) 257 (93) 108 (102) 15440 (1702) 1046.41 (54.36) 22.79 (1.27) 2108 (1828)
uk 10 (10) 45 (43) 60 (57) 192 (59) 75 (71) 25940 (527) 1123.48 (27.99) 25.96 (0.69) 1873 (1651)
Cloud processing time vs. network latency excluding retries [network latency shown in square brackets]
us 6 [114] 38 [115] 52 [115] 69 [117] 66 [116] 1367 [342] 98.87 [7.47] 2.35 [0.18] 1770 [1770]
eu 10 [10] 42 [31] 56 [31] 60 [34] 69 [32] 706 [1640] 38.88 [38.17] 0.91 [0.89] 1828 [1828]
uk 8 [1] 39 [2] 54 [2] 55 [4] 68 [3] 525 [120] 27.45 [6.26] 0.68 [0.15] 1651 [1651]

Table 1
SUMMARY OF MAC CLOUDLET UPDATE TIMES IN MS (MIN, MAX, MEAN, QUARTILES, STANDARD DEVIATION AND STANDARD ERROR)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Update latency (ms)

Fn
(x
) UK

EU
USA

Figure 3. CDF of update response time (ms) by Mac cloudlet location.
The bottom 95% (<533ms) is shown for clarity; the long tail (due to TCP
retries) affects 13% of requests. The bottom 80% of the data is normally
distributed (Shapiro-Wilk W=0.96, 0.98 and 0.98 respectively, p <0.001).

update time): EU 34.7ms > UK (t = 15.11, p < 0.001)
and US 127.6ms longer (t = 55.08, p < 0.001). Including
retransmissions, we still reject H0 (strongly in the US case)
but the model is a poorer explanation of the data (Fisher’s
F-statistic F2,6008 = 11.02 vs. F2,5246 = 1644, p < 0.001).

Homogenous hardware and software gives comparable
processing time across sites (mean ~50ms). Small O(4–
14ms) but statistically significant differences correlate with
network distance (EU 4ms > UK, t = 2.2, p < 0.03; US
14ms > UK, t = 6.6, p < 0.001). Unexplained outliers (up
to 1.4 seconds!) suggest missing factors—however, 98% of
updates fall below 130ms suggesting these are insignificant.

The number of retransmissions does vary by site: single
retransmissions account for over 85%: presumably due to
the high error rate of the 1st (wireless) hop. We attribute a
larger number of 2nd and 4th attempts in the US case to a
longer path (20 hops with a transatlantic link).

V. USER EXPERIENCE

To explore the impact of application location on user
interaction, and emulate the pace of interactions observed in
experts comparing medical images, we developed a simple

interactive game (‘whack-a-mole’, Figure 4). This latency-
sensitive game has a deliberately shallow learning curve.

A. Methodology

The game ran locally on an Apache server instantiated
on each cloudlet and displayed in a fullscreen web browser,
mirrored on the public display using VNC. Participants use
an iPhone as a trackpad via the ‘RoboHippo’ VNC client.

Figure 4. The whack-a-mole game

Participants were opportunity sampled and randomly as-
signed to one of two conditions: games played in increasing
or decreasing order of network distance. We chose these
progression/regression groups to balance order effects, and
avoid a factorial design of 6 groups (potentially with few
participants in each condition). Users were given a practice
round (in a randomly selected location) to reduce the impact
of learning effects (a trial without this round suggested users
hit considerably fewer moles on their first attempt).

B. Results

Results were collected from 29 participants: staff (10),
students (15) and visitors (3). Fourteen aged 18–24 years,
thirteen aged 25–34 and two aged 45–54. 66% were male.

Game performance (moles hit, mean hit time and cursor
movement) was collected during play and relayed to a
central server at the end of each round. User experience
was surveyed using a questionnaire.

We found VNC to be highly robust: approximately 40
connections were required to each cloudlet. Of these, only
4 (all between the phone and the US cloud) were dropped.

1) User Performance: Mole hit-rate differs across the
conditions: 87%, 85% and 71% in the UK, EU and US
respectively. There is a significant difference between UK
and US (t = 6.29, p < 0.001) suggesting that the longer
latency (+79/+111ms from EU/UK) did impact gameplay.

UK EU US

0
10
0

20
0

30
0

40
0

50
0

Condition

H
it

tim
e

(m
s)

Figure 5. Mole hit time by site. The US condition is visually distinct.

Table 2 summarises the hit times in each condition. Whilst
the interquartile range and standard deviation remain fairly
consistent (IQR = 132–179ms, SD = 126 − 142ms), the
median time increases with underlying latency (UK 179ms,
EU 211ms and US 343ms) [Figure 5].

Gameplay is impacted by cloudlet location. Using lin-
ear regression (F2,1056 = 57.03) we find that the EU
takes 25.4ms > UK with low statistical significance (t =
2.55, p <= 0.01) and US 108.5ms longer (t = 10.35,
p < 0.001). We suspect that the lowest hit times (e.g.
1ms) are due to the player fortuitously having the cursor
positioned where the mole appears. The upper bound on hit
time (~550ms) is consistent across conditions. The effect of
ordering was not statistically significant t = 1.24, p = 0.22.

2) User Experience: Users marked points on a printed
scale showing the extent to which they felt the game was
responsive, usable, frustrating, and under their control. They
also marked the point at which they would choose not to
play the game. This method allowed subjective comparisons
rather than absolute ratings on a traditional Likert scale
(Figure 6). In each case, UK and EU games scored positively
(median responsiveness: UK 45, EU 23.5; usability: UK
50, EU 33; frustration (scale inverted): UK 42, EU 26;
sense of control: UK 52, EU 32) while US games were
borderline negative (median responsiveness: -1.5, usability:
8, frustration (scale inverted): -3, sense of control: 0).

16 participants provided additional comments: 10 made
specific comparisons about the control or speed of the
games, whilst a further 4 commented more generally that
speed or control differed. Of the comparative comments, 3
participants suggested that the EU and US conditions were
easier to control and/or faster than the UK; 6 that the EU
and UK conditions were both easier to control/faster than
US; and 1 that the UK was faster/easier to control than the

Figure 6. User perception: positive values indicate users would play the
game (reported value greater than stop point); negative values the converse.

EU which was faster/easier than the US.

VI. RESULTS FOR EC2 CLOUD VMS

To understand how commercial cloud hosting could pro-
vide an infrastructure for cloudlets we repeated our method-
ology [Section IV] gathering 5,266 measurements across the
four EC2 locations (~1,300 per site) [Table 3/Figure 7]. We
found median update times of 90ms (Ireland), 161ms (East
Coast), 227ms (West Coast) and 319ms (Asia).

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Update latency (ms)

Fn
(x
) IRL

US East
US West
Asia

Figure 7. CDF of update response time (ms) by EC2 site. The top 5% are
excluded to allow us to focus on the shape of the main distribution. The
long tail is again TCP retries (12.8% of requests include retransmissions).
An interesting feature is the step at 50% in the ‘Asia’ case.

The EC2 instances offer more consistent processing delay
than the Mac cloudlets, IQR = ~12ms and SD = 6ms.
They are homogeneous and broadly normally distributed

Site Min 1Q Median Mean 3Q IQR Max SD SE n Misses Misses (%)
mac-usa 1 263 343 316 395 132 548 126.35 6.06 435 126 29.0%
mac-eu 1 137 211 233 304 167 557 138.81 6.66 435 64 14.7%
mac-uk 1 104 179 207 284 180 556 142.48 6.83 435 55 12.6%

Table 2
MOLE HIT TIME AGAINST LOCATION (MIN, MAX, MEAN, QUARTILES, INTER-QUARTILE RANGE, STANDARD DEVIATION AND STANDARD ERROR)

Site Min 1Q Median Mean 3Q Max SD SE n
Including TCP retries (latency with retries excluded shown in parentheses)
asia 254 (254) 271 (270) 319 (284) 692 (337) 429 (422) 18160 (488) 1642.92 (75.54) 44.71 (2.22) 1350 (1162)
usw 212 (212) 224 (224) 227 (226) 394 (228) 235 (230) 12750 (272) 917.49 (8.20) 25.26 (0.24) 1319 (1158)
use 135 (135) 156 (155) 161 (159) 295 (161) 169 (164) 9956 (227) 738.24 (9.30) 20.21 (0.27) 1334 (1162)
cirl 72 (72) 87 (87) 90 (90) 187 (91) 96 (93) 14710 (137) 754.88 (7.05) 21.23 (0.21) 1264 (1107)
Cloud processing time vs. network latency excluding retries [network latency shown in square brackets]
asia 55 [191] 68 [198] 71 [212] 72 [265] 74 [354] 98 [402] 6.35 [75.37] 0.19 [2.21] 1162 [1162]
usw 57 [154] 68 [155] 71 [155] 71 [157] 73 [156] 107 [201] 5.79 [5.67] 0.17 [0.17] 1158 [1158]
use 51 [82] 67 [88] 70 [89] 70 [90] 73 [91] 105 [152] 5.72 [7.43] 0.17 [0.22] 1162 [1162]
irl 51 [19] 66 [20] 69 [20] 68 [22] 71 [22] 84 [71] 4.39 [5.67] 0.13 [0.17] 1107 [1107]

Table 3
UPDATE TIMES FOR EC2 NODES IN MS (MIN, MAX, MEAN, QUARTILES, STANDARD DEVIATION AND STANDARD ERROR)

(Shapiro-Wilk W = 0.84− 0.94, p < 0.001). Our cloudlets
were capable of lower processing latency (1st quartile
~38ms vs. ~67ms); however, the 3rd quartile is almost
identical (~68ms vs. ~73ms). Again, there are small (order
of 2− 3ms) but statistically significant differences between
the sites. We do not see the same kinds of outliers observed
in our cloudlet nodes: all the data falls under 107ms. This
consistency is a nice emergent property of the EC2 cloud.

Asia’s update time behaves differently: SD is ~2× the
other EC2 nodes, 10× ignoring TCP retransmissions. Fig-
ure 7 clearly indicates > 50% of the updates take less time
(median = 272ms) than the rest (median = 425ms).
There is a significant reduction (157ms) in network latency
during December, highlighting the lack of control developers
have over end-to-end performance to cloud services.

Applying linear regression (retransmissions excluded), we
reject H0 (no effect of location on screen update time):
East Coast takes 70ms longer than Ireland t = 43.16, West
Coast 138ms longer t = 84.79 and Asia 246ms longer
t = 151.65, p < 0.001 in all conditions. Once again,
adding in retransmissions and all the Asia data, we still
reject H0, although the model is a less good fit: F-statistic:
F3,5263 = 52.94 as opposed to F3,4585 = 8385.

As before, the number of retransmissions varies with
location. Single retransmissions account for 54–80%. Longer
paths (West Coast and Asia) exhibit more 2nd, 3rd and 4th

level retransmissions. The number of retransmissions varies
from 157–188, but is not correlated with network distance.

Comparing our cloudlet testbed with EC2 sites at similar
network distances: we find Germany and Ireland directly
comparable. Mean and median update times are within 2ms
and quartiles within 10ms. The median processing time is
within 10ms and the 3rd quartile within 3ms. The cloudlets

are more variable, in the best case, up to 55% faster (30ms).

VII. ANALYSIS

A key argument for co-location of cloudlets and users
is that user experience suffers if execution of latency-
sensitive applications is too far away. So, “How close is
close enough?” Answering this question is not easy. The
maximum tolerable distance between application and user
depends on: the interaction-intensity of the application;
end-to-end network latency (whilst loosely correlated with
physical distance, measurements presented here show that
the nature of the correlation is complex); the host’s hardware
and software; and the user—some are more tolerant of delays
than others. Even the same user may respond differently over
time (e.g. becoming less tolerant when in a hurry).

Overall, we find EC2 nodes offer dependable interaction
performance with good statistical properties (i.e. a tight
performance envelope: mean SD = 5.56ms and lower
bound 51ms). Screen update time is correlated with network
location and the lower bound performance in our study was
between 72ms–254ms. It is worth noting that network paths
vary and are outside of developer control (we found a 157ms
latency reduction overnight). Longer paths exhibit a higher
proportion of compound successive failures, leading to long
interaction delays, and suggesting that local cloudlet use is
more dependable. Interestingly, the maximum delay was for
our UK cloudlet (1 hop)—implicating the wireless hop.

User performance was poorer in the US condition with
participants missing 2× as many moles. Mean hit time
is 1.5–3× the underlying latency, increasing with network
delay (median latencies in parentheses): UK 207ms (60ms),
EU 233ms (92ms) and US 316ms (171ms). There is no
statistically significant relationship between number of hits
and hit time or cursor movement. Human perception theories

suggest perceptual processing takes 50–200ms depending on
task and conditions [5]. We hypothesise that interactions are
perceived as instantaneous in the UK and EU conditions,
but that the feedback loop breaks down in the US condition,
slowing reactions and contributing to misses. We found
users surprisingly adaptable, suggesting a range of possible
application locations (beyond the immediate network edge).

Whilst our results suggest a preference for the game to
be as local as possible, the distinction between conditions is
less clear. Many users struggled to distinguish between con-
ditions: 8 users scored them equally on at least one attribute.
Informal comments indicate that participants attributed poor
US performance to personal factors (“I was much slower
to react”), scoring the games equally on the questionnaire.
This misattribution may not carry over to other applications
(e.g. if less playful or more latency-sensitive).

VIII. BACKGROUND AND RELATED WORK

Falling hardware costs have seen the emergence of com-
mercial networks of digital displays, whilst research projects
have explored user-customization of display content. An
early work, FLUMP [6], showed personalised content to
passers-by identified using Active Badges. GroupCast and
UniCast [7], also used badges to identify users at a display,
showing information that reflected their interests.

Recent projects have explored the use of mobile phones
to support user appropriation of public displays. MobiLenin
[8] used a mobile phone application to allow users to
vote for music in a restaurant; a projection displayed the
voting outcome and resulting music video. Other works (e.g.
[9]) used Bluetooth-enabled mobile devices to allow users
to appropriate displays; Bluetooth device names encoded
commands which determined display content.

Each of these works allowed display appropriation within
specific constraints (e.g. a set of predefined applications). In
contrast, this paper explores VM use to widen the potential
for display appropriation. As with commercial cloud com-
puting today, we expect that this approach will support the
widest range of applications and operating systems.

The combination of VMs and mobile devices has been ex-
plored for application partitioning [10] – in which processing
is automatically ofloaded from a mobile to the fixed network.
In this paper we offer insight into where such processing
should be placed to support crisp user interaction.

IX. CONCLUSION

Transient user appropriation of public displays offers
possibilities for new applications and usage models. In de-
signing systems to support appropriation there are numerous
possible architectures, and applications may be executed in a
range of locations. Our results help inform architectural and
placement choices. Through measurement and user study
we have shown that application placement can significantly
impact performance and user experience.

We confirm the intuition that moving applications closer
improves user experience. At the same time, results suggests
that provision of displays for appropriation need not wait
for the deployment of localised cloudlets. For minimally im-
mersive/interactive applications, display appropriation can
leverage commercial cloud provision.

If localised cloudlet infrastructure emerges, it may
broaden the applications and usage scenarios benefiting from
display appropriation. We do not yet know whether work-
related scenarios (e.g. Dr. Jones’) require cloudlets. Future
work will expand our study to include: the extent to which
highly interactive/immersive applications demand different
placement strategies; the potential for a hierarchical ap-
proach to application placement; and dynamic VM migration
based on runtime discovery of interaction characteristics.

ACKNOWLEDGEMENTS

This work was supported by European Union Seventh
Framework Programme (FP7/2007-2013), grant #244011
and National Science Foundation, grant CNS-0833882.

REFERENCES

[1] M. Weiser, “The Computer for the 21st Century,” Scientific
American, 1991.

[2] S. Berger, R. Kjelsen, and C. Narayanaswami, “Using Sym-
biotic Displays to View Sensitive Information in Public,” in
PERCOM ’05, 2005.

[3] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The
Case for VM-Based Cloudlets in Mobile Computing,” IEEE
Internet Computing, vol. 8, no. 4, 2009.

[4] A. Wolbach, J. Harkes, S. Chellappa, and M. Satyanarayanan,
“Transient Customization of Mobile Computing Infrastruc-
ture,” in Proc. of the MobiVirt 2008 Workshop on Virtualiza-
tion in Mobile Computing, 2008.

[5] S. Card, T. Moran, and A. Newell, The model human pro-
cessor: An engineering model of human performance. John
Wiley & Sons, 1986.

[6] J. Finney, S. Wade, N. Davies, and A. Friday, “Flump: The
flexible ubiquitous monitor project,” in Cabernet Radicals
Workshop, 1996.

[7] J. McCarthy, “Using public displays to create conversation
opportunities,” in Workshop at CSCW 2002.

[8] J. Scheible and T. Ojala, “Mobilenin combining a multi-track
music video, personal mobile phones and a public display into
multi-user interactive entertainment,” in Multimedia 2005.

[9] Rui José and Nuno Otero and Shahram Izadi and Richard
Harper, “Instant Places: Using Bluetooth for situated Inter-
action in Public displays,” IEEE Pervasive Computing, pp.
52–57, 2008.

[10] M.-R. Ra, A. Sheth, L. B. Mummert, P. Pillai, D. Wetherall,
and R. Govindan, “Odessa: enabling interactive perception
applications on mobile devices.” in MobiSys 2011.

